Abstract:Hyper-parameters are essential and critical for the performance of communication algorithms. However, current hyper-parameters tuning methods for warm-start particles swarm optimization with cross and mutation (WS-PSO-CM) algortihm for radio map-enabled unmanned aerial vehicle (UAV) trajectory and communication are primarily heuristic-based, exhibiting low levels of automation and unsatisfactory performance. In this paper, we design an large language model (LLM) agent for automatic hyper-parameters-tuning, where an iterative framework and model context protocol (MCP) are applied. In particular, the LLM agent is first setup via a profile, which specifies the mission, background, and output format. Then, the LLM agent is driven by the prompt requirement, and iteratively invokes WS-PSO-CM algorithm for exploration. Finally, the LLM agent autonomously terminates the loop and returns a set of hyper-parameters. Our experiment results show that the minimal sum-rate achieved by hyper-parameters generated via our LLM agent is significantly higher than those by both human heuristics and random generation methods. This indicates that an LLM agent with PSO knowledge and WS-PSO-CM algorithm background is useful in finding high-performance hyper-parameters.
Abstract:Terrestrial robots, i.e., unmanned ground vehicles (UGVs), and aerial robots, i.e., unmanned aerial vehicles (UAVs), operate in separate spaces. To exploit their complementary features (e.g., fields of views, communication links, computing capabilities), a promising paradigm termed integrated robotics network emerges, which provides communications for cooperative UAVs-UGVs applications. However, how to efficiently deploy UAVs and schedule the UAVs-UGVs connections according to different UGV tasks become challenging. In this paper, we propose a sum-rate maximization problem, where UGVs plan their trajectories autonomously and are dynamically associated with UAVs according to their planned trajectories. Although the problem is a NP-hard mixed integer program, a fast polynomial time algorithm using alternating gradient descent and penalty-based binary relaxation, is devised. Simulation results demonstrate the effectiveness of the proposed algorithm.