Abstract:Recently, several multi-modal models have been developed for joint image and language understanding, which have demonstrated impressive chat abilities by utilizing advanced large language models (LLMs). The process of developing such models is straightforward yet effective. It involves pre-training an adaptation module to align the semantics of the vision encoder and language model, followed by fine-tuning on the instruction-following data. However, despite the success of this pipeline in image and language understanding, its effectiveness in joint video and language understanding has not been widely explored. In this paper, we aim to develop a novel multi-modal foundation model capable of perceiving video, image, and language within a general framework. To achieve this goal, we introduce Valley: Video Assistant with Large Language model Enhanced ability. Specifically, our proposed Valley model is designed with a simple projection module that bridges video, image, and language modalities, and is further unified with a multi-lingual LLM. We also collect multi-source vision-text pairs and adopt a spatio-temporal pooling strategy to obtain a unified vision encoding of video and image input for pre-training. Furthermore, we generate multi-task instruction-following video data, including multi-shot captions, long video descriptions, action recognition, causal relationship inference, etc. To obtain the instruction-following data, we design diverse rounds of task-oriented conversations between humans and videos, facilitated by ChatGPT. Qualitative examples demonstrate that our proposed model has the potential to function as a highly effective multilingual video assistant that can make complex video understanding scenarios easy. Code, data, and models will be available at https://github.com/RupertLuo/Valley.
Abstract:Denoising Diffusion Probabilistic Models have shown extraordinary ability on various generative tasks. However, their slow inference speed renders them impractical in speech synthesis. This paper proposes a linear diffusion model (LinDiff) based on an ordinary differential equation to simultaneously reach fast inference and high sample quality. Firstly, we employ linear interpolation between the target and noise to design a diffusion sequence for training, while previously the diffusion path that links the noise and target is a curved segment. When decreasing the number of sampling steps (i.e., the number of line segments used to fit the path), the ease of fitting straight lines compared to curves allows us to generate higher quality samples from a random noise with fewer iterations. Secondly, to reduce computational complexity and achieve effective global modeling of noisy speech, LinDiff employs a patch-based processing approach that partitions the input signal into small patches. The patch-wise token leverages Transformer architecture for effective modeling of global information. Adversarial training is used to further improve the sample quality with decreased sampling steps. We test proposed method with speech synthesis conditioned on acoustic feature (Mel-spectrograms). Experimental results verify that our model can synthesize high-quality speech even with only one diffusion step. Both subjective and objective evaluations demonstrate that our model can synthesize speech of a quality comparable to that of autoregressive models with faster synthesis speed (3 diffusion steps).
Abstract:Image restoration in adverse weather conditions is a difficult task in computer vision. In this paper, we propose a novel transformer-based framework called GridFormer which serves as a backbone for image restoration under adverse weather conditions. GridFormer is designed in a grid structure using a residual dense transformer block, and it introduces two core designs. First, it uses an enhanced attention mechanism in the transformer layer. The mechanism includes stages of the sampler and compact self-attention to improve efficiency, and a local enhancement stage to strengthen local information. Second, we introduce a residual dense transformer block (RDTB) as the final GridFormer layer. This design further improves the network's ability to learn effective features from both preceding and current local features. The GridFormer framework achieves state-of-the-art results on five diverse image restoration tasks in adverse weather conditions, including image deraining, dehazing, deraining & dehazing, desnowing, and multi-weather restoration. The source code and pre-trained models will be released.
Abstract:In speech translation, leveraging multimodal data to improve model performance and address limitations of individual modalities has shown significant effectiveness. In this paper, we harness the complementary strengths of speech and text, which are disparate modalities. We observe three levels of modality gap between them, denoted by Modal input representation, Modal semantic, and Modal hidden states. To tackle these gaps, we propose \textbf{F}use-\textbf{S}peech-\textbf{T}ext (\textbf{FST}), a cross-modal model which supports three distinct input modalities for translation: speech, text, and fused speech-text. We leverage multiple techniques for cross-modal alignment and conduct a comprehensive analysis to assess its impact on speech translation, machine translation, and fused speech-text translation. We evaluate FST on MuST-C, GigaST, and newstest benchmark. Experiments show that the proposed FST achieves an average 34.0 BLEU on MuST-C En$\rightarrow$De/Es/Fr (vs SOTA +1.1 BLEU). Further experiments demonstrate that FST does not degrade on MT task, as observed in prior works. Instead, it yields an average improvement of 3.2 BLEU over the pre-trained MT model.
Abstract:Audio deepfake detection is an emerging topic in the artificial intelligence community. The second Audio Deepfake Detection Challenge (ADD 2023) aims to spur researchers around the world to build new innovative technologies that can further accelerate and foster research on detecting and analyzing deepfake speech utterances. Different from previous challenges (e.g. ADD 2022), ADD 2023 focuses on surpassing the constraints of binary real/fake classification, and actually localizing the manipulated intervals in a partially fake speech as well as pinpointing the source responsible for generating any fake audio. Furthermore, ADD 2023 includes more rounds of evaluation for the fake audio game sub-challenge. The ADD 2023 challenge includes three subchallenges: audio fake game (FG), manipulation region location (RL) and deepfake algorithm recognition (AR). This paper describes the datasets, evaluation metrics, and protocols. Some findings are also reported in audio deepfake detection tasks.
Abstract:This paper presents a novel transformer architecture for graph representation learning. The core insight of our method is to fully consider the information propagation among nodes and edges in a graph when building the attention module in the transformer blocks. Specifically, we propose a new attention mechanism called Graph Propagation Attention (GPA). It explicitly passes the information among nodes and edges in three ways, i.e. node-to-node, node-to-edge, and edge-to-node, which is essential for learning graph-structured data. On this basis, we design an effective transformer architecture named Graph Propagation Transformer (GPTrans) to further help learn graph data. We verify the performance of GPTrans in a wide range of graph learning experiments on several benchmark datasets. These results show that our method outperforms many state-of-the-art transformer-based graph models with better performance. The code will be released at https://github.com/czczup/GPTrans.
Abstract:We introduce PaLM 2, a new state-of-the-art language model that has better multilingual and reasoning capabilities and is more compute-efficient than its predecessor PaLM. PaLM 2 is a Transformer-based model trained using a mixture of objectives. Through extensive evaluations on English and multilingual language, and reasoning tasks, we demonstrate that PaLM 2 has significantly improved quality on downstream tasks across different model sizes, while simultaneously exhibiting faster and more efficient inference compared to PaLM. This improved efficiency enables broader deployment while also allowing the model to respond faster, for a more natural pace of interaction. PaLM 2 demonstrates robust reasoning capabilities exemplified by large improvements over PaLM on BIG-Bench and other reasoning tasks. PaLM 2 exhibits stable performance on a suite of responsible AI evaluations, and enables inference-time control over toxicity without additional overhead or impact on other capabilities. Overall, PaLM 2 achieves state-of-the-art performance across a diverse set of tasks and capabilities. When discussing the PaLM 2 family, it is important to distinguish between pre-trained models (of various sizes), fine-tuned variants of these models, and the user-facing products that use these models. In particular, user-facing products typically include additional pre- and post-processing steps. Additionally, the underlying models may evolve over time. Therefore, one should not expect the performance of user-facing products to exactly match the results reported in this report.
Abstract:Accurately detecting student behavior in classroom videos can aid in analyzing their classroom performance and improving teaching effectiveness. However, the current accuracy rate in behavior detection is low. To address this challenge, we propose the Student Classroom Behavior Detection system based on based on YOLOv7-BRA (YOLOv7 with Bi-level Routing Attention ). We identified eight different behavior patterns, including standing, sitting, speaking, listening, walking, raising hands, reading, and writing. We constructed a dataset, which contained 11,248 labels and 4,001 images, with an emphasis on the common behavior of raising hands in a classroom setting (Student Classroom Behavior dataset, SCB-Dataset). To improve detection accuracy, we added the biformer attention module to the YOLOv7 network. Finally, we fused the results from YOLOv7 CrowdHuman, SlowFast, and DeepSort models to obtain student classroom behavior data. We conducted experiments on the SCB-Dataset, and YOLOv7-BRA achieved an mAP@0.5 of 87.1%, resulting in a 2.2% improvement over previous results. Our SCB-dataset can be downloaded from: https://github.com/Whiffe/SCB-datase
Abstract:The Swin transformer has recently attracted attention in medical image analysis due to its computational efficiency and long-range modeling capability, which enables the establishment of more distant relationships between corresponding voxels. However, transformer-based models split images into tokens, which results in transformers that can only model and output coarse-grained spatial information representations. To address this issue, we propose Recovery Feature Resolution Network (RFRNet), which enables the transformer to contribute with fine-grained spatial information and rich semantic correspondences. Furthermore, shifted window partitioning operations are inflexible, indicating that they cannot perceive the semantic information over uncertain distances and automatically bridge the global connections between windows. Therefore, we present a Weighted Window Attention (WWA) to automatically build global interactions between windows after the regular and cyclic shifted window partitioning operations for Swin transformer blocks. The proposed unsupervised deformable image registration model, named RFR-WWANet, senses the long-range correlations, thereby facilitating meaningful semantic relevance of anatomical structures. Qualitative and quantitative results show that RFR-WWANet achieves significant performance improvements over baseline methods. Ablation experiments demonstrate the effectiveness of the RFRNet and WWA designs.
Abstract:Image inpainting is the task of filling in missing or masked region of an image with semantically meaningful contents. Recent methods have shown significant improvement in dealing with large-scale missing regions. However, these methods usually require large training datasets to achieve satisfactory results and there has been limited research into training these models on a small number of samples. To address this, we present a novel few-shot generative residual image inpainting method that produces high-quality inpainting results. The core idea is to propose an iterative residual reasoning method that incorporates Convolutional Neural Networks (CNNs) for feature extraction and Transformers for global reasoning within generative adversarial networks, along with image-level and patch-level discriminators. We also propose a novel forgery-patch adversarial training strategy to create faithful textures and detailed appearances. Extensive evaluations show that our method outperforms previous methods on the few-shot image inpainting task, both quantitatively and qualitatively.