Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
Training independent subnetworks for robust prediction

Oct 13, 2020
Marton Havasi, Rodolphe Jenatton, Stanislav Fort, Jeremiah Zhe Liu, Jasper Snoek, Balaji Lakshminarayanan, Andrew M. Dai, Dustin Tran


  Access Paper or Ask Questions

Learning Unstable Dynamical Systems with Time-Weighted Logarithmic Loss

Jul 10, 2020
Kamil Nar, Yuan Xue, Andrew M. Dai


  Access Paper or Ask Questions

Flow Contrastive Estimation of Energy-Based Models

Dec 02, 2019
Ruiqi Gao, Erik Nijkamp, Diederik P. Kingma, Zhen Xu, Andrew M. Dai, Ying Nian Wu


  Access Paper or Ask Questions

Modelling EHR timeseries by restricting feature interaction

Nov 14, 2019
Kun Zhang, Yuan Xue, Gerardo Flores, Alvin Rajkomar, Claire Cui, Andrew M. Dai

* Machine Learning for Health (ML4H) at NeurIPS 2019 - Extended Abstract 

  Access Paper or Ask Questions

Federated and Differentially Private Learning for Electronic Health Records

Nov 13, 2019
Stephen R. Pfohl, Andrew M. Dai, Katherine Heller

* Machine Learning for Health (ML4H) at NeurIPS 2019 - Extended Abstract 

  Access Paper or Ask Questions

Capacity, Bandwidth, and Compositionality in Emergent Language Learning

Oct 24, 2019
Cinjon Resnick, Abhinav Gupta, Jakob Foerster, Andrew M. Dai, Kyunghyun Cho

* The first two authors contributed equally 

  Access Paper or Ask Questions

Improved Patient Classification with Language Model Pretraining Over Clinical Notes

Oct 02, 2019
Jonas Kemp, Alvin Rajkomar, Andrew M. Dai

* Accepted at NeurIPS ML4H 2019, extended abstract track 

  Access Paper or Ask Questions

Learning an Adaptive Learning Rate Schedule

Sep 20, 2019
Zhen Xu, Andrew M. Dai, Jonas Kemp, Luke Metz


  Access Paper or Ask Questions

Graph Convolutional Transformer: Learning the Graphical Structure of Electronic Health Records

Jun 28, 2019
Edward Choi, Zhen Xu, Yujia Li, Michael W. Dusenberry, Gerardo Flores, Yuan Xue, Andrew M. Dai


  Access Paper or Ask Questions

Analyzing the Role of Model Uncertainty for Electronic Health Records

Jun 10, 2019
Michael W. Dusenberry, Dustin Tran, Edward Choi, Jonas Kemp, Jeremy Nixon, Ghassen Jerfel, Katherine Heller, Andrew M. Dai

* Presented at the ICML 2019 Workshop on Uncertainty & Robustness in Deep Learning. Code to be open-sourced 

  Access Paper or Ask Questions

Gmail Smart Compose: Real-Time Assisted Writing

May 17, 2019
Mia Xu Chen, Benjamin N Lee, Gagan Bansal, Yuan Cao, Shuyuan Zhang, Justin Lu, Jackie Tsay, Yinan Wang, Andrew M. Dai, Zhifeng Chen, Timothy Sohn, Yonghui Wu


  Access Paper or Ask Questions

Music Transformer

Oct 10, 2018
Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis Hawthorne, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, Douglas Eck

* Rewrote many sections to clarify the work, and extended relative attention to the local case. Previous title is "An Improved Relative Self-Attention Mechanism for Transformer with Application to Music Generation" 

  Access Paper or Ask Questions

Peptide-Spectra Matching from Weak Supervision

Aug 22, 2018
Samuel S. Schoenholz, Sean Hackett, Laura Deming, Eugene Melamud, Navdeep Jaitly, Fiona McAllister, Jonathon O'Brien, George Dahl, Bryson Bennett, Andrew M. Dai, Daphne Koller


  Access Paper or Ask Questions

Learning Longer-term Dependencies in RNNs with Auxiliary Losses

Jun 13, 2018
Trieu H. Trinh, Andrew M. Dai, Minh-Thang Luong, Quoc V. Le

* ICML 2018 

  Access Paper or Ask Questions

Embedding Text in Hyperbolic Spaces

Jun 12, 2018
Bhuwan Dhingra, Christopher J. Shallue, Mohammad Norouzi, Andrew M. Dai, George E. Dahl

* TextGraphs 2018 

  Access Paper or Ask Questions

Scalable and accurate deep learning for electronic health records

May 11, 2018
Alvin Rajkomar, Eyal Oren, Kai Chen, Andrew M. Dai, Nissan Hajaj, Peter J. Liu, Xiaobing Liu, Mimi Sun, Patrik Sundberg, Hector Yee, Kun Zhang, Gavin E. Duggan, Gerardo Flores, Michaela Hardt, Jamie Irvine, Quoc Le, Kurt Litsch, Jake Marcus, Alexander Mossin, Justin Tansuwan, De Wang, James Wexler, Jimbo Wilson, Dana Ludwig, Samuel L. Volchenboum, Katherine Chou, Michael Pearson, Srinivasan Madabushi, Nigam H. Shah, Atul J. Butte, Michael Howell, Claire Cui, Greg Corrado, Jeff Dean

* npj Digital Medicine 1:18 (2018) 
* Published version from https://www.nature.com/articles/s41746-018-0029-1 

  Access Paper or Ask Questions

MaskGAN: Better Text Generation via Filling in the______

Mar 01, 2018
William Fedus, Ian Goodfellow, Andrew M. Dai

* 16 pages, ICLR 2018 

  Access Paper or Ask Questions

Many Paths to Equilibrium: GANs Do Not Need to Decrease a Divergence At Every Step

Feb 20, 2018
William Fedus, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M. Dai, Shakir Mohamed, Ian Goodfellow

* 18 pages 

  Access Paper or Ask Questions

Who Said What: Modeling Individual Labelers Improves Classification

Jan 04, 2018
Melody Y. Guan, Varun Gulshan, Andrew M. Dai, Geoffrey E. Hinton

* AAAI 2018 

  Access Paper or Ask Questions

Adversarial Training Methods for Semi-Supervised Text Classification

May 06, 2017
Takeru Miyato, Andrew M. Dai, Ian Goodfellow

* Published as a conference paper at ICLR 2017 

  Access Paper or Ask Questions

Generating Sentences from a Continuous Space

May 12, 2016
Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Jozefowicz, Samy Bengio

* SIGNLL Conference on Computational Natural Language Learning (CONLL), 2016 
* First two authors contributed equally. Work was done when all authors were at Google, Inc 

  Access Paper or Ask Questions

Semi-supervised Sequence Learning

Nov 04, 2015
Andrew M. Dai, Quoc V. Le


  Access Paper or Ask Questions

Document Embedding with Paragraph Vectors

Jul 29, 2015
Andrew M. Dai, Christopher Olah, Quoc V. Le

* 8 pages 

  Access Paper or Ask Questions

The supervised hierarchical Dirichlet process

Dec 17, 2014
Andrew M. Dai, Amos J. Storkey

* 14 pages 

  Access Paper or Ask Questions