Alert button
Picture for Melvin Johnson

Melvin Johnson

Alert button

XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented Languages

May 24, 2023
Sebastian Ruder, Jonathan H. Clark, Alexander Gutkin, Mihir Kale, Min Ma, Massimo Nicosia, Shruti Rijhwani, Parker Riley, Jean-Michel A. Sarr, Xinyi Wang, John Wieting, Nitish Gupta, Anna Katanova, Christo Kirov, Dana L. Dickinson, Brian Roark, Bidisha Samanta, Connie Tao, David I. Adelani, Vera Axelrod, Isaac Caswell, Colin Cherry, Dan Garrette, Reeve Ingle, Melvin Johnson, Dmitry Panteleev, Partha Talukdar

Figure 1 for XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented Languages
Figure 2 for XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented Languages
Figure 3 for XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented Languages
Figure 4 for XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented Languages

Data scarcity is a crucial issue for the development of highly multilingual NLP systems. Yet for many under-represented languages (ULs) -- languages for which NLP re-search is particularly far behind in meeting user needs -- it is feasible to annotate small amounts of data. Motivated by this, we propose XTREME-UP, a benchmark defined by: its focus on the scarce-data scenario rather than zero-shot; its focus on user-centric tasks -- tasks with broad adoption by speakers of high-resource languages; and its focus on under-represented languages where this scarce-data scenario tends to be most realistic. XTREME-UP evaluates the capabilities of language models across 88 under-represented languages over 9 key user-centric technologies including ASR, OCR, MT, and information access tasks that are of general utility. We create new datasets for OCR, autocomplete, semantic parsing, and transliteration, and build on and refine existing datasets for other tasks. XTREME-UP provides methodology for evaluating many modeling scenarios including text-only, multi-modal (vision, audio, and text),supervised parameter tuning, and in-context learning. We evaluate commonly used models on the benchmark. We release all code and scripts to train and evaluate models

Viaarxiv icon

PaLM 2 Technical Report

May 17, 2023
Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, Eric Chu, Jonathan H. Clark, Laurent El Shafey, Yanping Huang, Kathy Meier-Hellstern, Gaurav Mishra, Erica Moreira, Mark Omernick, Kevin Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao, Yuanzhong Xu, Yujing Zhang, Gustavo Hernandez Abrego, Junwhan Ahn, Jacob Austin, Paul Barham, Jan Botha, James Bradbury, Siddhartha Brahma, Kevin Brooks, Michele Catasta, Yong Cheng, Colin Cherry, Christopher A. Choquette-Choo, Aakanksha Chowdhery, Clément Crepy, Shachi Dave, Mostafa Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz, Nan Du, Ethan Dyer, Vlad Feinberg, Fangxiaoyu Feng, Vlad Fienber, Markus Freitag, Xavier Garcia, Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-Ari, Steven Hand, Hadi Hashemi, Le Hou, Joshua Howland, Andrea Hu, Jeffrey Hui, Jeremy Hurwitz, Michael Isard, Abe Ittycheriah, Matthew Jagielski, Wenhao Jia, Kathleen Kenealy, Maxim Krikun, Sneha Kudugunta, Chang Lan, Katherine Lee, Benjamin Lee, Eric Li, Music Li, Wei Li, YaGuang Li, Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhongtao Liu, Frederick Liu, Marcello Maggioni, Aroma Mahendru, Joshua Maynez, Vedant Misra, Maysam Moussalem, Zachary Nado, John Nham, Eric Ni, Andrew Nystrom, Alicia Parrish, Marie Pellat, Martin Polacek, Alex Polozov, Reiner Pope, Siyuan Qiao, Emily Reif, Bryan Richter, Parker Riley, Alex Castro Ros, Aurko Roy, Brennan Saeta, Rajkumar Samuel, Renee Shelby, Ambrose Slone, Daniel Smilkov, David R. So, Daniel Sohn, Simon Tokumine, Dasha Valter, Vijay Vasudevan, Kiran Vodrahalli, Xuezhi Wang, Pidong Wang, Zirui Wang, Tao Wang, John Wieting, Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven Zheng, Ce Zheng, Weikang Zhou, Denny Zhou, Slav Petrov, Yonghui Wu

Figure 1 for PaLM 2 Technical Report
Figure 2 for PaLM 2 Technical Report
Figure 3 for PaLM 2 Technical Report
Figure 4 for PaLM 2 Technical Report

We introduce PaLM 2, a new state-of-the-art language model that has better multilingual and reasoning capabilities and is more compute-efficient than its predecessor PaLM. PaLM 2 is a Transformer-based model trained using a mixture of objectives. Through extensive evaluations on English and multilingual language, and reasoning tasks, we demonstrate that PaLM 2 has significantly improved quality on downstream tasks across different model sizes, while simultaneously exhibiting faster and more efficient inference compared to PaLM. This improved efficiency enables broader deployment while also allowing the model to respond faster, for a more natural pace of interaction. PaLM 2 demonstrates robust reasoning capabilities exemplified by large improvements over PaLM on BIG-Bench and other reasoning tasks. PaLM 2 exhibits stable performance on a suite of responsible AI evaluations, and enables inference-time control over toxicity without additional overhead or impact on other capabilities. Overall, PaLM 2 achieves state-of-the-art performance across a diverse set of tasks and capabilities. When discussing the PaLM 2 family, it is important to distinguish between pre-trained models (of various sizes), fine-tuned variants of these models, and the user-facing products that use these models. In particular, user-facing products typically include additional pre- and post-processing steps. Additionally, the underlying models may evolve over time. Therefore, one should not expect the performance of user-facing products to exactly match the results reported in this report.

Viaarxiv icon

The unreasonable effectiveness of few-shot learning for machine translation

Feb 02, 2023
Xavier Garcia, Yamini Bansal, Colin Cherry, George Foster, Maxim Krikun, Fangxiaoyu Feng, Melvin Johnson, Orhan Firat

Figure 1 for The unreasonable effectiveness of few-shot learning for machine translation
Figure 2 for The unreasonable effectiveness of few-shot learning for machine translation
Figure 3 for The unreasonable effectiveness of few-shot learning for machine translation
Figure 4 for The unreasonable effectiveness of few-shot learning for machine translation

We demonstrate the potential of few-shot translation systems, trained with unpaired language data, for both high and low-resource language pairs. We show that with only 5 examples of high-quality translation data shown at inference, a transformer decoder-only model trained solely with self-supervised learning, is able to match specialized supervised state-of-the-art models as well as more general commercial translation systems. In particular, we outperform the best performing system on the WMT'21 English - Chinese news translation task by only using five examples of English - Chinese parallel data at inference. Moreover, our approach in building these models does not necessitate joint multilingual training or back-translation, is conceptually simple and shows the potential to extend to the multilingual setting. Furthermore, the resulting models are two orders of magnitude smaller than state-of-the-art language models. We then analyze the factors which impact the performance of few-shot translation systems, and highlight that the quality of the few-shot demonstrations heavily determines the quality of the translations generated by our models. Finally, we show that the few-shot paradigm also provides a way to control certain attributes of the translation -- we show that we are able to control for regional varieties and formality using only a five examples at inference, paving the way towards controllable machine translation systems.

Viaarxiv icon

Mu$^{2}$SLAM: Multitask, Multilingual Speech and Language Models

Dec 19, 2022
Yong Cheng, Yu Zhang, Melvin Johnson, Wolfgang Macherey, Ankur Bapna

Figure 1 for Mu$^{2}$SLAM: Multitask, Multilingual Speech and Language Models
Figure 2 for Mu$^{2}$SLAM: Multitask, Multilingual Speech and Language Models
Figure 3 for Mu$^{2}$SLAM: Multitask, Multilingual Speech and Language Models
Figure 4 for Mu$^{2}$SLAM: Multitask, Multilingual Speech and Language Models

We present Mu$^{2}$SLAM, a multilingual sequence-to-sequence model pre-trained jointly on unlabeled speech, unlabeled text and supervised data spanning Automatic Speech Recognition (ASR), Automatic Speech Translation (AST) and Machine Translation (MT), in over 100 languages. By leveraging a quantized representation of speech as a target, Mu$^{2}$SLAM trains the speech-text models with a sequence-to-sequence masked denoising objective similar to T5 on the decoder and a masked language modeling (MLM) objective on the encoder, for both unlabeled speech and text, while utilizing the supervised tasks to improve cross-lingual and cross-modal representation alignment within the model. On CoVoST AST, Mu$^{2}$SLAM establishes a new state-of-the-art for models trained on public datasets, improving on xx-en translation over the previous best by 1.9 BLEU points and on en-xx translation by 1.1 BLEU points. On Voxpopuli ASR, our model matches the performance of an mSLAM model fine-tuned with an RNN-T decoder, despite using a relatively weaker sequence-to-sequence architecture. On text understanding tasks, our model improves by more than 6\% over mSLAM on XNLI, getting closer to the performance of mT5 models of comparable capacity on XNLI and TydiQA, paving the way towards a single model for all speech and text understanding tasks.

Viaarxiv icon

XTREME-S: Evaluating Cross-lingual Speech Representations

Apr 13, 2022
Alexis Conneau, Ankur Bapna, Yu Zhang, Min Ma, Patrick von Platen, Anton Lozhkov, Colin Cherry, Ye Jia, Clara Rivera, Mihir Kale, Daan Van Esch, Vera Axelrod, Simran Khanuja, Jonathan H. Clark, Orhan Firat, Michael Auli, Sebastian Ruder, Jason Riesa, Melvin Johnson

Figure 1 for XTREME-S: Evaluating Cross-lingual Speech Representations
Figure 2 for XTREME-S: Evaluating Cross-lingual Speech Representations
Figure 3 for XTREME-S: Evaluating Cross-lingual Speech Representations
Figure 4 for XTREME-S: Evaluating Cross-lingual Speech Representations

We introduce XTREME-S, a new benchmark to evaluate universal cross-lingual speech representations in many languages. XTREME-S covers four task families: speech recognition, classification, speech-to-text translation and retrieval. Covering 102 languages from 10+ language families, 3 different domains and 4 task families, XTREME-S aims to simplify multilingual speech representation evaluation, as well as catalyze research in "universal" speech representation learning. This paper describes the new benchmark and establishes the first speech-only and speech-text baselines using XLS-R and mSLAM on all downstream tasks. We motivate the design choices and detail how to use the benchmark. Datasets and fine-tuning scripts are made easily accessible at https://hf.co/datasets/google/xtreme_s.

* Minor fix: language code for Filipino (Tagalog), "tg" -> "tl" 
Viaarxiv icon

mSLAM: Massively multilingual joint pre-training for speech and text

Feb 03, 2022
Ankur Bapna, Colin Cherry, Yu Zhang, Ye Jia, Melvin Johnson, Yong Cheng, Simran Khanuja, Jason Riesa, Alexis Conneau

Figure 1 for mSLAM: Massively multilingual joint pre-training for speech and text
Figure 2 for mSLAM: Massively multilingual joint pre-training for speech and text
Figure 3 for mSLAM: Massively multilingual joint pre-training for speech and text
Figure 4 for mSLAM: Massively multilingual joint pre-training for speech and text

We present mSLAM, a multilingual Speech and LAnguage Model that learns cross-lingual cross-modal representations of speech and text by pre-training jointly on large amounts of unlabeled speech and text in multiple languages. mSLAM combines w2v-BERT pre-training on speech with SpanBERT pre-training on character-level text, along with Connectionist Temporal Classification (CTC) losses on paired speech and transcript data, to learn a single model capable of learning from and representing both speech and text signals in a shared representation space. We evaluate mSLAM on several downstream speech understanding tasks and find that joint pre-training with text improves quality on speech translation, speech intent classification and speech language-ID while being competitive on multilingual ASR, when compared against speech-only pre-training. Our speech translation model demonstrates zero-shot text translation without seeing any text translation data, providing evidence for cross-modal alignment of representations. mSLAM also benefits from multi-modal fine-tuning, further improving the quality of speech translation by directly leveraging text translation data during the fine-tuning process. Our empirical analysis highlights several opportunities and challenges arising from large-scale multimodal pre-training, suggesting directions for future research.

Viaarxiv icon

DOCmT5: Document-Level Pretraining of Multilingual Language Models

Dec 16, 2021
Chia-Hsuan Lee, Aditya Siddhant, Viresh Ratnakar, Melvin Johnson

Figure 1 for DOCmT5: Document-Level Pretraining of Multilingual Language Models
Figure 2 for DOCmT5: Document-Level Pretraining of Multilingual Language Models
Figure 3 for DOCmT5: Document-Level Pretraining of Multilingual Language Models
Figure 4 for DOCmT5: Document-Level Pretraining of Multilingual Language Models

In this paper, we introduce DOCmT5, a multilingual sequence-to-sequence language model pre-trained with large scale parallel documents. While previous approaches have focused on leveraging sentence-level parallel data, we try to build a general-purpose pre-trained model that can understand and generate long documents. We propose a simple and effective pre-training objective - Document Reordering Machine Translation (DrMT), in which the input documents that are shuffled and masked need to be translated. DrMT brings consistent improvements over strong baselines on a variety of document-level generation tasks, including over 12 BLEU points for seen-language-pair document-level MT, over 7 BLEU points for unseen-language-pair document-level MT and over 3 ROUGE-1 points for seen-language-pair cross-lingual summarization. We achieve state-of-the-art (SOTA) on WMT20 De-En and IWSLT15 Zh-En document translation tasks. We also conduct extensive analysis on various factors for document pre-training, including (1) the effects of pre-training data quality and (2) The effects of combining mono-lingual and cross-lingual pre-training. We plan to make our model checkpoints publicly available.

Viaarxiv icon

SLAM: A Unified Encoder for Speech and Language Modeling via Speech-Text Joint Pre-Training

Oct 20, 2021
Ankur Bapna, Yu-an Chung, Nan Wu, Anmol Gulati, Ye Jia, Jonathan H. Clark, Melvin Johnson, Jason Riesa, Alexis Conneau, Yu Zhang

Figure 1 for SLAM: A Unified Encoder for Speech and Language Modeling via Speech-Text Joint Pre-Training
Figure 2 for SLAM: A Unified Encoder for Speech and Language Modeling via Speech-Text Joint Pre-Training
Figure 3 for SLAM: A Unified Encoder for Speech and Language Modeling via Speech-Text Joint Pre-Training
Figure 4 for SLAM: A Unified Encoder for Speech and Language Modeling via Speech-Text Joint Pre-Training

Unsupervised pre-training is now the predominant approach for both text and speech understanding. Self-attention models pre-trained on large amounts of unannotated data have been hugely successful when fine-tuned on downstream tasks from a variety of domains and languages. This paper takes the universality of unsupervised language pre-training one step further, by unifying speech and text pre-training within a single model. We build a single encoder with the BERT objective on unlabeled text together with the w2v-BERT objective on unlabeled speech. To further align our model representations across modalities, we leverage alignment losses, specifically Translation Language Modeling (TLM) and Speech Text Matching (STM) that make use of supervised speech-text recognition data. We demonstrate that incorporating both speech and text data during pre-training can significantly improve downstream quality on CoVoST~2 speech translation, by around 1 BLEU compared to single-modality pre-trained models, while retaining close to SotA performance on LibriSpeech and SpeechStew ASR tasks. On four GLUE tasks and text-normalization, we observe evidence of capacity limitations and interference between the two modalities, leading to degraded performance compared to an equivalent text-only model, while still being competitive with BERT. Through extensive empirical analysis we also demonstrate the importance of the choice of objective function for speech pre-training, and the beneficial effect of adding additional supervised signals on the quality of the learned representations.

Viaarxiv icon

Multilingual Document-Level Translation Enables Zero-Shot Transfer From Sentences to Documents

Sep 21, 2021
Biao Zhang, Ankur Bapna, Melvin Johnson, Ali Dabirmoghaddam, Naveen Arivazhagan, Orhan Firat

Figure 1 for Multilingual Document-Level Translation Enables Zero-Shot Transfer From Sentences to Documents
Figure 2 for Multilingual Document-Level Translation Enables Zero-Shot Transfer From Sentences to Documents
Figure 3 for Multilingual Document-Level Translation Enables Zero-Shot Transfer From Sentences to Documents
Figure 4 for Multilingual Document-Level Translation Enables Zero-Shot Transfer From Sentences to Documents

Document-level neural machine translation (DocNMT) delivers coherent translations by incorporating cross-sentence context. However, for most language pairs there's a shortage of parallel documents, although parallel sentences are readily available. In this paper, we study whether and how contextual modeling in DocNMT is transferable from sentences to documents in a zero-shot fashion (i.e. no parallel documents for student languages) through multilingual modeling. Using simple concatenation-based DocNMT, we explore the effect of 3 factors on multilingual transfer: the number of document-supervised teacher languages, the data schedule for parallel documents at training, and the data condition of parallel documents (genuine vs. backtranslated). Our experiments on Europarl-7 and IWSLT-10 datasets show the feasibility of multilingual transfer for DocNMT, particularly on document-specific metrics. We observe that more teacher languages and adequate data schedule both contribute to better transfer quality. Surprisingly, the transfer is less sensitive to the data condition and multilingual DocNMT achieves comparable performance with both back-translated and genuine document pairs.

Viaarxiv icon

HintedBT: Augmenting Back-Translation with Quality and Transliteration Hints

Sep 09, 2021
Sahana Ramnath, Melvin Johnson, Abhirut Gupta, Aravindan Raghuveer

Figure 1 for HintedBT: Augmenting Back-Translation with Quality and Transliteration Hints
Figure 2 for HintedBT: Augmenting Back-Translation with Quality and Transliteration Hints
Figure 3 for HintedBT: Augmenting Back-Translation with Quality and Transliteration Hints
Figure 4 for HintedBT: Augmenting Back-Translation with Quality and Transliteration Hints

Back-translation (BT) of target monolingual corpora is a widely used data augmentation strategy for neural machine translation (NMT), especially for low-resource language pairs. To improve effectiveness of the available BT data, we introduce HintedBT -- a family of techniques which provides hints (through tags) to the encoder and decoder. First, we propose a novel method of using both high and low quality BT data by providing hints (as source tags on the encoder) to the model about the quality of each source-target pair. We don't filter out low quality data but instead show that these hints enable the model to learn effectively from noisy data. Second, we address the problem of predicting whether a source token needs to be translated or transliterated to the target language, which is common in cross-script translation tasks (i.e., where source and target do not share the written script). For such cases, we propose training the model with additional hints (as target tags on the decoder) that provide information about the operation required on the source (translation or both translation and transliteration). We conduct experiments and detailed analyses on standard WMT benchmarks for three cross-script low/medium-resource language pairs: {Hindi,Gujarati,Tamil}-to-English. Our methods compare favorably with five strong and well established baselines. We show that using these hints, both separately and together, significantly improves translation quality and leads to state-of-the-art performance in all three language pairs in corresponding bilingual settings.

* 17 pages including references and appendix. Accepted at EMNLP 2021 
Viaarxiv icon