Alert button
Picture for Alexandre Passos

Alexandre Passos

Alert button

PaLM 2 Technical Report

May 17, 2023
Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, Eric Chu, Jonathan H. Clark, Laurent El Shafey, Yanping Huang, Kathy Meier-Hellstern, Gaurav Mishra, Erica Moreira, Mark Omernick, Kevin Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao, Yuanzhong Xu, Yujing Zhang, Gustavo Hernandez Abrego, Junwhan Ahn, Jacob Austin, Paul Barham, Jan Botha, James Bradbury, Siddhartha Brahma, Kevin Brooks, Michele Catasta, Yong Cheng, Colin Cherry, Christopher A. Choquette-Choo, Aakanksha Chowdhery, Clément Crepy, Shachi Dave, Mostafa Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz, Nan Du, Ethan Dyer, Vlad Feinberg, Fangxiaoyu Feng, Vlad Fienber, Markus Freitag, Xavier Garcia, Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-Ari, Steven Hand, Hadi Hashemi, Le Hou, Joshua Howland, Andrea Hu, Jeffrey Hui, Jeremy Hurwitz, Michael Isard, Abe Ittycheriah, Matthew Jagielski, Wenhao Jia, Kathleen Kenealy, Maxim Krikun, Sneha Kudugunta, Chang Lan, Katherine Lee, Benjamin Lee, Eric Li, Music Li, Wei Li, YaGuang Li, Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhongtao Liu, Frederick Liu, Marcello Maggioni, Aroma Mahendru, Joshua Maynez, Vedant Misra, Maysam Moussalem, Zachary Nado, John Nham, Eric Ni, Andrew Nystrom, Alicia Parrish, Marie Pellat, Martin Polacek, Alex Polozov, Reiner Pope, Siyuan Qiao, Emily Reif, Bryan Richter, Parker Riley, Alex Castro Ros, Aurko Roy, Brennan Saeta, Rajkumar Samuel, Renee Shelby, Ambrose Slone, Daniel Smilkov, David R. So, Daniel Sohn, Simon Tokumine, Dasha Valter, Vijay Vasudevan, Kiran Vodrahalli, Xuezhi Wang, Pidong Wang, Zirui Wang, Tao Wang, John Wieting, Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven Zheng, Ce Zheng, Weikang Zhou, Denny Zhou, Slav Petrov, Yonghui Wu

Figure 1 for PaLM 2 Technical Report
Figure 2 for PaLM 2 Technical Report
Figure 3 for PaLM 2 Technical Report
Figure 4 for PaLM 2 Technical Report

We introduce PaLM 2, a new state-of-the-art language model that has better multilingual and reasoning capabilities and is more compute-efficient than its predecessor PaLM. PaLM 2 is a Transformer-based model trained using a mixture of objectives. Through extensive evaluations on English and multilingual language, and reasoning tasks, we demonstrate that PaLM 2 has significantly improved quality on downstream tasks across different model sizes, while simultaneously exhibiting faster and more efficient inference compared to PaLM. This improved efficiency enables broader deployment while also allowing the model to respond faster, for a more natural pace of interaction. PaLM 2 demonstrates robust reasoning capabilities exemplified by large improvements over PaLM on BIG-Bench and other reasoning tasks. PaLM 2 exhibits stable performance on a suite of responsible AI evaluations, and enables inference-time control over toxicity without additional overhead or impact on other capabilities. Overall, PaLM 2 achieves state-of-the-art performance across a diverse set of tasks and capabilities. When discussing the PaLM 2 family, it is important to distinguish between pre-trained models (of various sizes), fine-tuned variants of these models, and the user-facing products that use these models. In particular, user-facing products typically include additional pre- and post-processing steps. Additionally, the underlying models may evolve over time. Therefore, one should not expect the performance of user-facing products to exactly match the results reported in this report.

Viaarxiv icon

Scaling Up Models and Data with $\texttt{t5x}$ and $\texttt{seqio}$

Mar 31, 2022
Adam Roberts, Hyung Won Chung, Anselm Levskaya, Gaurav Mishra, James Bradbury, Daniel Andor, Sharan Narang, Brian Lester, Colin Gaffney, Afroz Mohiuddin, Curtis Hawthorne, Aitor Lewkowycz, Alex Salcianu, Marc van Zee, Jacob Austin, Sebastian Goodman, Livio Baldini Soares, Haitang Hu, Sasha Tsvyashchenko, Aakanksha Chowdhery, Jasmijn Bastings, Jannis Bulian, Xavier Garcia, Jianmo Ni, Andrew Chen, Kathleen Kenealy, Jonathan H. Clark, Stephan Lee, Dan Garrette, James Lee-Thorp, Colin Raffel, Noam Shazeer, Marvin Ritter, Maarten Bosma, Alexandre Passos, Jeremy Maitin-Shepard, Noah Fiedel, Mark Omernick, Brennan Saeta, Ryan Sepassi, Alexander Spiridonov, Joshua Newlan, Andrea Gesmundo

Figure 1 for Scaling Up Models and Data with $\texttt{t5x}$ and $\texttt{seqio}$
Figure 2 for Scaling Up Models and Data with $\texttt{t5x}$ and $\texttt{seqio}$

Recent neural network-based language models have benefited greatly from scaling up the size of training datasets and the number of parameters in the models themselves. Scaling can be complicated due to various factors including the need to distribute computation on supercomputer clusters (e.g., TPUs), prevent bottlenecks when infeeding data, and ensure reproducible results. In this work, we present two software libraries that ease these issues: $\texttt{t5x}$ simplifies the process of building and training large language models at scale while maintaining ease of use, and $\texttt{seqio}$ provides a task-based API for simple creation of fast and reproducible training data and evaluation pipelines. These open-source libraries have been used to train models with hundreds of billions of parameters on datasets with multiple terabytes of training data. Along with the libraries, we release configurations and instructions for T5-like encoder-decoder models as well as GPT-like decoder-only architectures. $\texttt{t5x}$ and $\texttt{seqio}$ are open source and available at https://github.com/google-research/t5x and https://github.com/google/seqio, respectively.

Viaarxiv icon

FRUIT: Faithfully Reflecting Updated Information in Text

Dec 16, 2021
Robert L. Logan IV, Alexandre Passos, Sameer Singh, Ming-Wei Chang

Figure 1 for FRUIT: Faithfully Reflecting Updated Information in Text
Figure 2 for FRUIT: Faithfully Reflecting Updated Information in Text
Figure 3 for FRUIT: Faithfully Reflecting Updated Information in Text
Figure 4 for FRUIT: Faithfully Reflecting Updated Information in Text

Textual knowledge bases such as Wikipedia require considerable effort to keep up to date and consistent. While automated writing assistants could potentially ease this burden, the problem of suggesting edits grounded in external knowledge has been under-explored. In this paper, we introduce the novel generation task of *faithfully reflecting updated information in text*(FRUIT) where the goal is to update an existing article given new evidence. We release the FRUIT-WIKI dataset, a collection of over 170K distantly supervised data produced from pairs of Wikipedia snapshots, along with our data generation pipeline and a gold evaluation set of 914 instances whose edits are guaranteed to be supported by the evidence. We provide benchmark results for popular generation systems as well as EDIT5 -- a T5-based approach tailored to editing we introduce that establishes the state of the art. Our analysis shows that developing models that can update articles faithfully requires new capabilities for neural generation models, and opens doors to many new applications.

* v1.0 
Viaarxiv icon

Faster Neural Network Training with Data Echoing

Jul 12, 2019
Dami Choi, Alexandre Passos, Christopher J. Shallue, George E. Dahl

Figure 1 for Faster Neural Network Training with Data Echoing
Figure 2 for Faster Neural Network Training with Data Echoing
Figure 3 for Faster Neural Network Training with Data Echoing
Figure 4 for Faster Neural Network Training with Data Echoing

In the twilight of Moore's law, GPUs and other specialized hardware accelerators have dramatically sped up neural network training. However, earlier stages of the training pipeline, such as disk I/O and data preprocessing, do not run on accelerators. As accelerators continue to improve, these earlier stages will increasingly become the bottleneck. In this paper, we introduce "data echoing," which reduces the total computation used by earlier pipeline stages and speeds up training whenever computation upstream from accelerators dominates the training time. Data echoing reuses (or "echoes") intermediate outputs from earlier pipeline stages in order to reclaim idle capacity. We investigate the behavior of different data echoing algorithms on various workloads, for various amounts of echoing, and for various batch sizes. We find that in all settings, at least one data echoing algorithm can match the baseline's predictive performance using less upstream computation. In some cases, data echoing can even compensate for a 4x slower input pipeline.

Viaarxiv icon

TensorFlow Eager: A Multi-Stage, Python-Embedded DSL for Machine Learning

Feb 27, 2019
Akshay Agrawal, Akshay Naresh Modi, Alexandre Passos, Allen Lavoie, Ashish Agarwal, Asim Shankar, Igor Ganichev, Josh Levenberg, Mingsheng Hong, Rajat Monga, Shanqing Cai

Figure 1 for TensorFlow Eager: A Multi-Stage, Python-Embedded DSL for Machine Learning
Figure 2 for TensorFlow Eager: A Multi-Stage, Python-Embedded DSL for Machine Learning
Figure 3 for TensorFlow Eager: A Multi-Stage, Python-Embedded DSL for Machine Learning
Figure 4 for TensorFlow Eager: A Multi-Stage, Python-Embedded DSL for Machine Learning

TensorFlow Eager is a multi-stage, Python-embedded domain-specific language for hardware-accelerated machine learning, suitable for both interactive research and production. TensorFlow, which TensorFlow Eager extends, requires users to represent computations as dataflow graphs; this permits compiler optimizations and simplifies deployment but hinders rapid prototyping and run-time dynamism. TensorFlow Eager eliminates these usability costs without sacrificing the benefits furnished by graphs: It provides an imperative front-end to TensorFlow that executes operations immediately and a JIT tracer that translates Python functions composed of TensorFlow operations into executable dataflow graphs. TensorFlow Eager thus offers a multi-stage programming model that makes it easy to interpolate between imperative and staged execution in a single package.

* Proc. of the 2nd SysML Conference, 2019  
Viaarxiv icon

Scikit-learn: Machine Learning in Python

Jun 05, 2018
Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Andreas Müller, Joel Nothman, Gilles Louppe, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, Édouard Duchesnay

Figure 1 for Scikit-learn: Machine Learning in Python

Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from http://scikit-learn.org.

* Journal of Machine Learning Research (2011)  
* Update authors list and URLs 
Viaarxiv icon

Large scale distributed neural network training through online distillation

Apr 09, 2018
Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert Ormandi, George E. Dahl, Geoffrey E. Hinton

Figure 1 for Large scale distributed neural network training through online distillation
Figure 2 for Large scale distributed neural network training through online distillation
Figure 3 for Large scale distributed neural network training through online distillation
Figure 4 for Large scale distributed neural network training through online distillation

Techniques such as ensembling and distillation promise model quality improvements when paired with almost any base model. However, due to increased test-time cost (for ensembles) and increased complexity of the training pipeline (for distillation), these techniques are challenging to use in industrial settings. In this paper we explore a variant of distillation which is relatively straightforward to use as it does not require a complicated multi-stage setup or many new hyperparameters. Our first claim is that online distillation enables us to use extra parallelism to fit very large datasets about twice as fast. Crucially, we can still speed up training even after we have already reached the point at which additional parallelism provides no benefit for synchronous or asynchronous stochastic gradient descent. Two neural networks trained on disjoint subsets of the data can share knowledge by encouraging each model to agree with the predictions the other model would have made. These predictions can come from a stale version of the other model so they can be safely computed using weights that only rarely get transmitted. Our second claim is that online distillation is a cost-effective way to make the exact predictions of a model dramatically more reproducible. We support our claims using experiments on the Criteo Display Ad Challenge dataset, ImageNet, and the largest to-date dataset used for neural language modeling, containing $6\times 10^{11}$ tokens and based on the Common Crawl repository of web data.

Viaarxiv icon

Efficient Non-parametric Estimation of Multiple Embeddings per Word in Vector Space

Apr 24, 2015
Arvind Neelakantan, Jeevan Shankar, Alexandre Passos, Andrew McCallum

Figure 1 for Efficient Non-parametric Estimation of Multiple Embeddings per Word in Vector Space
Figure 2 for Efficient Non-parametric Estimation of Multiple Embeddings per Word in Vector Space
Figure 3 for Efficient Non-parametric Estimation of Multiple Embeddings per Word in Vector Space
Figure 4 for Efficient Non-parametric Estimation of Multiple Embeddings per Word in Vector Space

There is rising interest in vector-space word embeddings and their use in NLP, especially given recent methods for their fast estimation at very large scale. Nearly all this work, however, assumes a single vector per word type ignoring polysemy and thus jeopardizing their usefulness for downstream tasks. We present an extension to the Skip-gram model that efficiently learns multiple embeddings per word type. It differs from recent related work by jointly performing word sense discrimination and embedding learning, by non-parametrically estimating the number of senses per word type, and by its efficiency and scalability. We present new state-of-the-art results in the word similarity in context task and demonstrate its scalability by training with one machine on a corpus of nearly 1 billion tokens in less than 6 hours.

* In Conference on Empirical Methods in Natural Language Processing, 2014 
Viaarxiv icon

Learning Soft Linear Constraints with Application to Citation Field Extraction

Oct 17, 2014
Sam Anzaroot, Alexandre Passos, David Belanger, Andrew McCallum

Figure 1 for Learning Soft Linear Constraints with Application to Citation Field Extraction
Figure 2 for Learning Soft Linear Constraints with Application to Citation Field Extraction
Figure 3 for Learning Soft Linear Constraints with Application to Citation Field Extraction
Figure 4 for Learning Soft Linear Constraints with Application to Citation Field Extraction

Accurately segmenting a citation string into fields for authors, titles, etc. is a challenging task because the output typically obeys various global constraints. Previous work has shown that modeling soft constraints, where the model is encouraged, but not require to obey the constraints, can substantially improve segmentation performance. On the other hand, for imposing hard constraints, dual decomposition is a popular technique for efficient prediction given existing algorithms for unconstrained inference. We extend the technique to perform prediction subject to soft constraints. Moreover, with a technique for performing inference given soft constraints, it is easy to automatically generate large families of constraints and learn their costs with a simple convex optimization problem during training. This allows us to obtain substantial gains in accuracy on a new, challenging citation extraction dataset.

* appears in Proc. the 52nd Annual Meeting of the Association for Computational Linguistics (ACL2014) 
Viaarxiv icon

Lexicon Infused Phrase Embeddings for Named Entity Resolution

Apr 22, 2014
Alexandre Passos, Vineet Kumar, Andrew McCallum

Figure 1 for Lexicon Infused Phrase Embeddings for Named Entity Resolution
Figure 2 for Lexicon Infused Phrase Embeddings for Named Entity Resolution
Figure 3 for Lexicon Infused Phrase Embeddings for Named Entity Resolution
Figure 4 for Lexicon Infused Phrase Embeddings for Named Entity Resolution

Most state-of-the-art approaches for named-entity recognition (NER) use semi supervised information in the form of word clusters and lexicons. Recently neural network-based language models have been explored, as they as a byproduct generate highly informative vector representations for words, known as word embeddings. In this paper we present two contributions: a new form of learning word embeddings that can leverage information from relevant lexicons to improve the representations, and the first system to use neural word embeddings to achieve state-of-the-art results on named-entity recognition in both CoNLL and Ontonotes NER. Our system achieves an F1 score of 90.90 on the test set for CoNLL 2003---significantly better than any previous system trained on public data, and matching a system employing massive private industrial query-log data.

* Accepted in CoNLL 2014 
Viaarxiv icon