Abstract:The rapid growth of social media has led to the widespread dissemination of fake news across multiple content forms, including text, images, audio, and video. Traditional unimodal detection methods fall short in addressing complex cross-modal manipulations; as a result, multimodal fake news detection has emerged as a more effective solution. However, existing multimodal approaches, especially in the context of fake news detection on social media, often overlook the confounders hidden within complex cross-modal interactions, leading models to rely on spurious statistical correlations rather than genuine causal mechanisms. In this paper, we propose the Causal Intervention-based Multimodal Deconfounded Detection (CIMDD) framework, which systematically models three types of confounders via a unified Structural Causal Model (SCM): (1) Lexical Semantic Confounder (LSC); (2) Latent Visual Confounder (LVC); (3) Dynamic Cross-Modal Coupling Confounder (DCCC). To mitigate the influence of these confounders, we specifically design three causal modules based on backdoor adjustment, frontdoor adjustment, and cross-modal joint intervention to block spurious correlations from different perspectives and achieve causal disentanglement of representations for deconfounded reasoning. Experimental results on the FakeSV and FVC datasets demonstrate that CIMDD significantly improves detection accuracy, outperforming state-of-the-art methods by 4.27% and 4.80%, respectively. Furthermore, extensive experimental results indicate that CIMDD exhibits strong generalization and robustness across diverse multimodal scenarios.
Abstract:The rapid growth of social media has led to the widespread dissemination of fake news across multiple content forms, including text, images, audio, and video. Compared to unimodal fake news detection, multimodal fake news detection benefits from the increased availability of information across multiple modalities. However, in the context of social media, certain modalities in multimodal fake news detection tasks may contain disruptive or over-expressive information. These elements often include exaggerated or embellished content. We define this phenomenon as modality disruption and explore its impact on detection models through experiments. To address the issue of modality disruption in a targeted manner, we propose a multimodal fake news detection framework, FND-MoE. Additionally, we design a two-pass feature selection mechanism to further mitigate the impact of modality disruption. Extensive experiments on the FakeSV and FVC-2018 datasets demonstrate that FND-MoE significantly outperforms state-of-the-art methods, with accuracy improvements of 3.45% and 3.71% on the respective datasets compared to baseline models.
Abstract:The rapid advancement of audio generation technologies has escalated the risks of malicious deepfake audio across speech, sound, singing voice, and music, threatening multimedia security and trust. While existing countermeasures (CMs) perform well in single-type audio deepfake detection (ADD), their performance declines in cross-type scenarios. This paper is dedicated to studying the alltype ADD task. We are the first to comprehensively establish an all-type ADD benchmark to evaluate current CMs, incorporating cross-type deepfake detection across speech, sound, singing voice, and music. Then, we introduce the prompt tuning self-supervised learning (PT-SSL) training paradigm, which optimizes SSL frontend by learning specialized prompt tokens for ADD, requiring 458x fewer trainable parameters than fine-tuning (FT). Considering the auditory perception of different audio types,we propose the wavelet prompt tuning (WPT)-SSL method to capture type-invariant auditory deepfake information from the frequency domain without requiring additional training parameters, thereby enhancing performance over FT in the all-type ADD task. To achieve an universally CM, we utilize all types of deepfake audio for co-training. Experimental results demonstrate that WPT-XLSR-AASIST achieved the best performance, with an average EER of 3.58% across all evaluation sets. The code is available online.
Abstract:Multimodal fake news detection is essential for maintaining the authenticity of Internet multimedia information. Significant differences in form and content of multimodal information lead to intensified optimization conflicts, hindering effective model training as well as reducing the effectiveness of existing fusion methods for bimodal. To address this problem, we propose the MTPareto framework to optimize multimodal fusion, using a Targeted Pareto(TPareto) optimization algorithm for fusion-level-specific objective learning with a certain focus. Based on the designed hierarchical fusion network, the algorithm defines three fusion levels with corresponding losses and implements all-modal-oriented Pareto gradient integration for each. This approach accomplishes superior multimodal fusion by utilizing the information obtained from intermediate fusion to provide positive effects to the entire process. Experiment results on FakeSV and FVC datasets show that the proposed framework outperforms baselines and the TPareto optimization algorithm achieves 2.40% and 1.89% accuracy improvement respectively.
Abstract:Current research in audio deepfake detection is gradually transitioning from binary classification to multi-class tasks, referred as audio deepfake source tracing task. However, existing studies on source tracing consider only closed-set scenarios and have not considered the challenges posed by open-set conditions. In this paper, we define the Neural Codec Source Tracing (NCST) task, which is capable of performing open-set neural codec classification and interpretable ALM detection. Specifically, we constructed the ST-Codecfake dataset for the NCST task, which includes bilingual audio samples generated by 11 state-of-the-art neural codec methods and ALM-based out-ofdistribution (OOD) test samples. Furthermore, we establish a comprehensive source tracing benchmark to assess NCST models in open-set conditions. The experimental results reveal that although the NCST models perform well in in-distribution (ID) classification and OOD detection, they lack robustness in classifying unseen real audio. The ST-codecfake dataset and code are available.
Abstract:Text-to-audio (TTA) model is capable of generating diverse audio from textual prompts. However, most mainstream TTA models, which predominantly rely on Mel-spectrograms, still face challenges in producing audio with rich content. The intricate details and texture required in Mel-spectrograms for such audio often surpass the models' capacity, leading to outputs that are blurred or lack coherence. In this paper, we begin by investigating the critical role of U-Net in Mel-spectrogram generation. Our analysis shows that in U-Net structure, high-frequency components in skip-connections and the backbone influence texture and detail, while low-frequency components in the backbone are critical for the diffusion denoising process. We further propose ``Mel-Refine'', a plug-and-play approach that enhances Mel-spectrogram texture and detail by adjusting different component weights during inference. Our method requires no additional training or fine-tuning and is fully compatible with any diffusion-based TTA architecture. Experimental results show that our approach boosts performance metrics of the latest TTA model Tango2 by 25\%, demonstrating its effectiveness.
Abstract:Portrait image animation using audio has rapidly advanced, enabling the creation of increasingly realistic and expressive animated faces. The challenges of this multimodality-guided video generation task involve fusing various modalities while ensuring consistency in timing and portrait. We further seek to produce vivid talking heads. To address these challenges, we present LetsTalk (LatEnt Diffusion TranSformer for Talking Video Synthesis), a diffusion transformer that incorporates modular temporal and spatial attention mechanisms to merge multimodality and enhance spatial-temporal consistency. To handle multimodal conditions, we first summarize three fusion schemes, ranging from shallow to deep fusion compactness, and thoroughly explore their impact and applicability. Then we propose a suitable solution according to the modality differences of image, audio, and video generation. For portrait, we utilize a deep fusion scheme (Symbiotic Fusion) to ensure portrait consistency. For audio, we implement a shallow fusion scheme (Direct Fusion) to achieve audio-animation alignment while preserving diversity. Our extensive experiments demonstrate that our approach generates temporally coherent and realistic videos with enhanced diversity and liveliness.
Abstract:Speech synthesis technology has posed a serious threat to speaker verification systems. Currently, the most effective fake audio detection methods utilize pretrained models, and integrating features from various layers of pretrained model further enhances detection performance. However, most of the previously proposed fusion methods require fine-tuning the pretrained models, resulting in excessively long training times and hindering model iteration when facing new speech synthesis technology. To address this issue, this paper proposes a feature fusion method based on the Mixture of Experts, which extracts and integrates features relevant to fake audio detection from layer features, guided by a gating network based on the last layer feature, while freezing the pretrained model. Experiments conducted on the ASVspoof2019 and ASVspoof2021 datasets demonstrate that the proposed method achieves competitive performance compared to those requiring fine-tuning.
Abstract:In recent years, speech diffusion models have advanced rapidly. Alongside the widely used U-Net architecture, transformer-based models such as the Diffusion Transformer (DiT) have also gained attention. However, current DiT speech models treat Mel spectrograms as general images, which overlooks the specific acoustic properties of speech. To address these limitations, we propose a method called Directional Patch Interaction for Text-to-Speech (DPI-TTS), which builds on DiT and achieves fast training without compromising accuracy. Notably, DPI-TTS employs a low-to-high frequency, frame-by-frame progressive inference approach that aligns more closely with acoustic properties, enhancing the naturalness of the generated speech. Additionally, we introduce a fine-grained style temporal modeling method that further improves speaker style similarity. Experimental results demonstrate that our method increases the training speed by nearly 2 times and significantly outperforms the baseline models.
Abstract:Current mainstream audio generation methods primarily rely on simple text prompts, often failing to capture the nuanced details necessary for multi-style audio generation. To address this limitation, the Sound Event Enhanced Prompt Adapter is proposed. Unlike traditional static global style transfer, this method extracts style embedding through cross-attention between text and reference audio for adaptive style control. Adaptive layer normalization is then utilized to enhance the model's capacity to express multiple styles. Additionally, the Sound Event Reference Style Transfer Dataset (SERST) is introduced for the proposed target style audio generation task, enabling dual-prompt audio generation using both text and audio references. Experimental results demonstrate the robustness of the model, achieving state-of-the-art Fr\'echet Distance of 26.94 and KL Divergence of 1.82, surpassing Tango, AudioLDM, and AudioGen. Furthermore, the generated audio shows high similarity to its corresponding audio reference. The demo, code, and dataset are publicly available.