Abstract:In the intelligent era, the interaction between humans and intelligent systems fundamentally involves collaboration with autonomous intelligent agents. Human-AI Collaboration (HAC) represents a novel type of human-machine relationship facilitated by autonomous intelligent machines equipped with AI technologies. In this paradigm, AI agents serve not only as auxiliary tools but also as active teammates, partnering with humans to accomplish tasks collaboratively. Human-centered AI (HCAI) emphasizes that humans play critical leadership roles in the collaboration. This human-led collaboration imparts new dimensions to the human-machine relationship, necessitating innovative research perspectives, paradigms, and agenda to address the unique challenges posed by HAC. This chapter delves into the essence of HAC from the human-centered perspective, outlining its core concepts and distinguishing features. It reviews the current research methodologies and research agenda within the HAC field from the HCAI perspective, highlighting advancements and ongoing studies. Furthermore, a framework for human-centered HAC (HCHAC) is proposed by integrating these reviews and analyses. A case study of HAC in the context of autonomous vehicles is provided, illustrating practical applications and the synergistic interactions between humans and AI agents. Finally, it identifies potential future research directions aimed at enhancing the effectiveness, reliability, and ethical integration of human-centered HAC systems in diverse domains.
Abstract:Task-oriented semantic communication enhances transmission efficiency by conveying semantic information rather than exact messages. Deep learning (DL)-based semantic communication can effectively cultivate the essential semantic knowledge for semantic extraction, transmission, and interpretation by leveraging massive labeled samples for downstream task training. In this paper, we propose a self-supervised learning-based semantic communication framework (SLSCom) to enhance task inference performance, particularly in scenarios with limited access to labeled samples. Specifically, we develop a task-relevant semantic encoder using unlabeled samples, which can be collected by devices in real-world edge networks. To facilitate task-relevant semantic extraction, we introduce self-supervision for learning contrastive features and formulate the information bottleneck (IB) problem to balance the tradeoff between the informativeness of the extracted features and task inference performance. Given the computational challenges of the IB problem, we devise a practical and effective solution by employing self-supervised classification and reconstruction pretext tasks. We further propose efficient joint training methods to enhance end-to-end inference accuracy over wireless channels, even with few labeled samples. We evaluate the proposed framework on image classification tasks over multipath wireless channels. Extensive simulation results demonstrate that SLSCom significantly outperforms conventional digital coding methods and existing DL-based approaches across varying labeled data set sizes and SNR conditions, even when the unlabeled samples are irrelevant to the downstream tasks.
Abstract:Jailbreak attacks have been observed to largely fail against recent reasoning models enhanced by Chain-of-Thought (CoT) reasoning. However, the underlying mechanism remains underexplored, and relying solely on reasoning capacity may raise security concerns. In this paper, we try to answer the question: Does CoT reasoning really reduce harmfulness from jailbreaking? Through rigorous theoretical analysis, we demonstrate that CoT reasoning has dual effects on jailbreaking harmfulness. Based on the theoretical insights, we propose a novel jailbreak method, FicDetail, whose practical performance validates our theoretical findings.
Abstract:We aim to develop a robust yet flexible visual foundation model for Earth observation. It should possess strong capabilities in recognizing and localizing diverse visual targets while providing compatibility with various input-output interfaces required across different task scenarios. Current systems cannot meet these requirements, as they typically utilize task-specific architecture trained on narrow data domains with limited semantic coverage. Our study addresses these limitations from two aspects: data and modeling. We first introduce an automatic data engine that enjoys significantly better scalability compared to previous human annotation or rule-based approaches. It has enabled us to create the largest dataset of its kind to date, comprising 270K image-text-mask triplets covering an unprecedented range of diverse semantic categories and attribute specifications. Based on this data foundation, we further propose a task unification paradigm that centers around referring expression segmentation. It effectively handles a wide range of vision-centric perception tasks, including classification, detection, segmentation, grounding, etc, using a single model without any task-specific heads. Combining these innovations on data and modeling, we present RemoteSAM, a foundation model that establishes new SoTA on several earth observation perception benchmarks, outperforming other foundation models such as Falcon, GeoChat, and LHRS-Bot with significantly higher efficiency. Models and data are publicly available at https://github.com/1e12Leon/RemoteSAM.
Abstract:Major depressive disorder (MDD) impacts more than 300 million people worldwide, highlighting a significant public health issue. However, the uneven distribution of medical resources and the complexity of diagnostic methods have resulted in inadequate attention to this disorder in numerous countries and regions. This paper introduces a high-performance MDD diagnosis tool named MDD-LLM, an AI-driven framework that utilizes fine-tuned large language models (LLMs) and extensive real-world samples to tackle challenges in MDD diagnosis. Therefore, we select 274,348 individual information from the UK Biobank cohort to train and evaluate the proposed method. Specifically, we select 274,348 individual records from the UK Biobank cohort and design a tabular data transformation method to create a large corpus for training and evaluating the proposed approach. To illustrate the advantages of MDD-LLM, we perform comprehensive experiments and provide several comparative analyses against existing model-based solutions across multiple evaluation metrics. Experimental results show that MDD-LLM (70B) achieves an accuracy of 0.8378 and an AUC of 0.8919 (95% CI: 0.8799 - 0.9040), significantly outperforming existing machine learning and deep learning frameworks for MDD diagnosis. Given the limited exploration of LLMs in MDD diagnosis, we examine numerous factors that may influence the performance of our proposed method, such as tabular data transformation techniques and different fine-tuning strategies.
Abstract:Navigating autonomous vehicles in open scenarios is a challenge due to the difficulties in handling unseen objects. Existing solutions either rely on small models that struggle with generalization or large models that are resource-intensive. While collaboration between the two offers a promising solution, the key challenge is deciding when and how to engage the large model. To address this issue, this paper proposes opportunistic collaborative planning (OCP), which seamlessly integrates efficient local models with powerful cloud models through two key innovations. First, we propose large vision model guided model predictive control (LVM-MPC), which leverages the cloud for LVM perception and decision making. The cloud output serves as a global guidance for a local MPC, thereby forming a closed-loop perception-to-control system. Second, to determine the best timing for large model query and service, we propose collaboration timing optimization (CTO), including object detection confidence thresholding (ODCT) and cloud forward simulation (CFS), to decide when to seek cloud assistance and when to offer cloud service. Extensive experiments show that the proposed OCP outperforms existing methods in terms of both navigation time and success rate.
Abstract:Recent breakthroughs in artificial intelligence (AI) have brought about increasingly capable systems that demonstrate remarkable abilities in reasoning, language understanding, and problem-solving. These advancements have prompted a renewed examination of AI awareness, not as a philosophical question of consciousness, but as a measurable, functional capacity. In this review, we explore the emerging landscape of AI awareness, which includes meta-cognition (the ability to represent and reason about its own state), self-awareness (recognizing its own identity, knowledge, limitations, inter alia), social awareness (modeling the knowledge, intentions, and behaviors of other agents), and situational awareness (assessing and responding to the context in which it operates). First, we draw on insights from cognitive science, psychology, and computational theory to trace the theoretical foundations of awareness and examine how the four distinct forms of AI awareness manifest in state-of-the-art AI. Next, we systematically analyze current evaluation methods and empirical findings to better understand these manifestations. Building on this, we explore how AI awareness is closely linked to AI capabilities, demonstrating that more aware AI agents tend to exhibit higher levels of intelligent behaviors. Finally, we discuss the risks associated with AI awareness, including key topics in AI safety, alignment, and broader ethical concerns. AI awareness is a double-edged sword: it improves general capabilities, i.e., reasoning, safety, while also raises concerns around misalignment and societal risks, demanding careful oversight as AI capabilities grow. On the whole, our interdisciplinary review provides a roadmap for future research and aims to clarify the role of AI awareness in the ongoing development of intelligent machines.
Abstract:Realizing green communication in robotic mixed reality (RoboMR) systems presents a challenge, due to the necessity of uploading high-resolution images at high frequencies through wireless channels. This paper proposes Gaussian splatting (GS) RoboMR (GSRMR), which achieves a lower energy consumption and makes a concrete step towards green RoboMR. The crux to GSRMR is to build a GS model which enables the simulator to opportunistically render a photo-realistic view from the robot's pose, thereby reducing the need for excessive image uploads. Since the GS model may involve discrepancies compared to the actual environments, a GS cross-layer optimization (GSCLO) framework is further proposed, which jointly optimizes content switching (i.e., deciding whether to upload image or not) and power allocation across different frames. The GSCLO problem is solved by an accelerated penalty optimization (APO) algorithm. Experiments demonstrate that the proposed GSRMR reduces the communication energy by over 10x compared with RoboMR. Furthermore, the proposed GSRMR with APO outperforms extensive baseline schemes, in terms of peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM).
Abstract:Data-driven methods have shown potential in electric-vehicle battery management tasks such as capacity estimation, but their deployment is bottlenecked by poor performance in data-limited scenarios. Sharing battery data among algorithm developers can enable accurate and generalizable data-driven models. However, an effective battery management framework that simultaneously ensures data privacy and fault tolerance is still lacking. This paper proposes a swarm battery management system that unites a decentralized swarm learning (SL) framework and credibility weight-based model merging mechanism to enhance battery capacity estimation in data-limited scenarios while ensuring data privacy and security. The effectiveness of the SL framework is validated on a dataset comprising 66 commercial LiNiCoAlO2 cells cycled under various operating conditions. Specifically, the capacity estimation performance is validated in four cases, including data-balanced, volume-biased, feature-biased, and quality-biased scenarios. Our results show that SL can enhance the estimation accuracy in all data-limited cases and achieve a similar level of accuracy with central learning where large amounts of data are available.
Abstract:As telecommunication service providers shifting their focus to analyzing user behavior for package design and marketing interventions, a critical challenge lies in developing a unified, end-to-end framework capable of modeling long-term and periodic user behavior sequences with diverse time granularities, multi-modal data inputs, and heterogeneous labels. This paper introduces GTS-LUM, a novel user behavior model that redefines modeling paradigms in telecommunication settings. GTS-LUM adopts a (multi-modal) encoder-adapter-LLM decoder architecture, enhanced with several telecom-specific innovations. Specifically, the model incorporates an advanced timestamp processing method to handle varying time granularities. It also supports multi-modal data inputs -- including structured tables and behavior co-occurrence graphs -- and aligns these with semantic information extracted by a tokenizer using a Q-former structure. Additionally, GTS-LUM integrates a front-placed target-aware mechanism to highlight historical behaviors most relevant to the target. Extensive experiments on industrial dataset validate the effectiveness of this end-to-end framework and also demonstrate that GTS-LUM outperforms LLM4Rec approaches which are popular in recommendation systems, offering an effective and generalizing solution for user behavior modeling in telecommunications.