Abstract:This paper presents a multimodal control framework based on spiking neural networks (SNNs) for robotic arms aboard space stations. It is designed to cope with the constraints of limited onboard resources while enabling autonomous manipulation and material transfer in space operations. By combining geometric states with tactile and semantic information, the framework strengthens environmental awareness and contributes to more robust control strategies. To guide the learning process progressively, a dual-channel, three-stage curriculum reinforcement learning (CRL) scheme is further integrated into the system. The framework was tested across a range of tasks including target approach, object grasping, and stable lifting with wall-mounted robotic arms, demonstrating reliable performance throughout. Experimental evaluations demonstrate that the proposed method consistently outperforms baseline approaches in both task success rate and energy efficiency. These findings highlight its suitability for real-world aerospace applications.
Abstract:The booming development of AI agents presents unprecedented opportunities for automating complex tasks across various domains. However, their multi-step, multi-tool collaboration capabilities in the financial sector remain underexplored. This paper introduces FinGAIA, an end-to-end benchmark designed to evaluate the practical abilities of AI agents in the financial domain. FinGAIA comprises 407 meticulously crafted tasks, spanning seven major financial sub-domains: securities, funds, banking, insurance, futures, trusts, and asset management. These tasks are organized into three hierarchical levels of scenario depth: basic business analysis, asset decision support, and strategic risk management. We evaluated 10 mainstream AI agents in a zero-shot setting. The best-performing agent, ChatGPT, achieved an overall accuracy of 48.9\%, which, while superior to non-professionals, still lags financial experts by over 35 percentage points. Error analysis has revealed five recurring failure patterns: Cross-modal Alignment Deficiency, Financial Terminological Bias, Operational Process Awareness Barrier, among others. These patterns point to crucial directions for future research. Our work provides the first agent benchmark closely related to the financial domain, aiming to objectively assess and promote the development of agents in this crucial field. Partial data is available at https://github.com/SUFE-AIFLM-Lab/FinGAIA.
Abstract:Transcending human cognitive limitations represents a critical frontier in LLM training. Proprietary agentic systems like DeepResearch have demonstrated superhuman capabilities on extremely complex information-seeking benchmarks such as BrowseComp, a feat previously unattainable. We posit that their success hinges on a sophisticated reasoning pattern absent in open-source models: the ability to systematically reduce extreme uncertainty when navigating vast information landscapes. Based on this insight, we introduce WebSailor, a complete post-training methodology designed to instill this crucial capability. Our approach involves generating novel, high-uncertainty tasks through structured sampling and information obfuscation, RFT cold start, and an efficient agentic RL training algorithm, Duplicating Sampling Policy Optimization (DUPO). With this integrated pipeline, WebSailor significantly outperforms all opensource agents in complex information-seeking tasks, matching proprietary agents' performance and closing the capability gap.
Abstract:The rapid advancement of large language models (LLMs) has transformed the landscape of agentic information seeking capabilities through the integration of tools such as search engines and web browsers. However, current mainstream approaches for enabling LLM web search proficiency face significant challenges: supervised fine-tuning struggles with data production in open-search domains, while RL converges quickly, limiting their data utilization efficiency. To address these issues, we propose EvolveSearch, a novel iterative self-evolution framework that combines SFT and RL to enhance agentic web search capabilities without any external human-annotated reasoning data. Extensive experiments on seven multi-hop question-answering (MHQA) benchmarks demonstrate that EvolveSearch consistently improves performance across iterations, ultimately achieving an average improvement of 4.7\% over the current state-of-the-art across seven benchmarks, opening the door to self-evolution agentic capabilities in open web search domains.
Abstract:Addressing intricate real-world problems necessitates in-depth information seeking and multi-step reasoning. Recent progress in agentic systems, exemplified by Deep Research, underscores the potential for autonomous multi-step research. In this work, we present a cohesive paradigm for building end-to-end agentic information seeking agents from a data-centric and training-stage perspective. Our approach consists of four key stages: (1) browsing data construction, (2) trajectories sampling, (3) supervised fine-tuning for effective cold start, and (4) reinforcement learning for enhanced generalisation. We instantiate this framework in a web agent based on the ReAct, WebDancer. Empirical evaluations on the challenging information seeking benchmarks, GAIA and WebWalkerQA, demonstrate the strong performance of WebDancer, achieving considerable results and highlighting the efficacy of our training paradigm. Further analysis of agent training provides valuable insights and actionable, systematic pathways for developing more capable agentic models. The codes and demo will be released in https://github.com/Alibaba-NLP/WebAgent.
Abstract:Reasoning large language models are rapidly evolving across various domains. However, their capabilities in handling complex financial tasks still require in-depth exploration. In this paper, we introduce Fin-R1, a reasoning large language model specifically designed for the financial sector. Fin-R1 is built using a two-stage architecture, leveraging a financial reasoning dataset distilled and processed based on DeepSeek-R1. Through supervised fine-tuning (SFT) and reinforcement learning (RL) training, it demonstrates performance close to DeepSeek-R1 with a parameter size of 7 billion across a range of financial reasoning tasks. It achieves the state-of-the-art (SOTA) in the FinQA and ConvFinQA tasks between those LLMs in our evaluation, surpassing larger models in other tasks as well. Fin-R1 showcases strong reasoning and decision-making capabilities, providing solutions to various problems encountered in the financial domain. Our code is available at https://github.com/SUFE-AIFLM-Lab/Fin-R1.
Abstract:Query routing for retrieval-augmented generation aims to assign an input query to the most suitable search engine. Existing works rely heavily on supervised datasets that require extensive manual annotation, resulting in high costs and limited scalability, as well as poor generalization to out-of-distribution scenarios. To address these challenges, we introduce a novel unsupervised method that constructs the "upper-bound" response to evaluate the quality of retrieval-augmented responses. This evaluation enables the decision of the most suitable search engine for a given query. By eliminating manual annotations, our approach can automatically process large-scale real user queries and create training data. We conduct extensive experiments across five datasets, demonstrating that our method significantly enhances scalability and generalization capabilities.
Abstract:A core challenge for signal data recovery is to model the distribution of signal matrix (SM) data based on measured low-quality data in biomedical engineering of magnetic particle imaging (MPI). For acquiring the high-resolution (high-quality) SM, the number of meticulous measurements at numerous positions in the field-of-view proves time-consuming (measurement of a 37x37x37 SM takes about 32 hours). To improve reconstructed signal quality and shorten SM measurement time, existing methods explore to generating high-resolution SM based on time-saving measured low-resolution SM (a 9x9x9 SM just takes about 0.5 hours). However, previous methods show poor performance for high-frequency signal recovery in SM. To achieve a high-resolution SM recovery and shorten its acquisition time, we propose a frequency-domain structure consistency loss function and data component embedding strategy to model global and local structural information of SM. We adopt a transformer-based network to evaluate this function and the strategy. We evaluate our methods and state-of-the-art (SOTA) methods on the two simulation datasets and four public measured SMs in Open MPI Data. The results show that our method outperforms the SOTA methods in high-frequency structural signal recovery. Additionally, our method can recover a high-resolution SM with clear high-frequency structure based on a down-sampling factor of 16 less than 15 seconds, which accelerates the acquisition time over 60 times faster than the measurement-based HR SM with the minimum error (nRMSE=0.041). Moreover, our method is applied in our three in-house MPI systems, and boost their performance for signal reconstruction.
Abstract:Current research on tool learning primarily focuses on selecting the most effective tool from a wide array of options, often overlooking cost-effectiveness, a crucial factor in human problem-solving. In this paper, we address the selection of homogeneous tools by predicting both their performance and the associated cost required to accomplish a given task. We then assign queries to the optimal tools in a cost-effective manner. Our experimental results demonstrate that our method achieves higher performance at a lower cost compared to strong baseline approaches.
Abstract:The intersection of physics-based vision and deep learning presents an exciting frontier for advancing computer vision technologies. By leveraging the principles of physics to inform and enhance deep learning models, we can develop more robust and accurate vision systems. Physics-based vision aims to invert the processes to recover scene properties such as shape, reflectance, light distribution, and medium properties from images. In recent years, deep learning has shown promising improvements for various vision tasks, and when combined with physics-based vision, these approaches can enhance the robustness and accuracy of vision systems. This technical report summarizes the outcomes of the Physics-Based Vision Meets Deep Learning (PBDL) 2024 challenge, held in CVPR 2024 workshop. The challenge consisted of eight tracks, focusing on Low-Light Enhancement and Detection as well as High Dynamic Range (HDR) Imaging. This report details the objectives, methodologies, and results of each track, highlighting the top-performing solutions and their innovative approaches.