Abstract:Existing spacecraft rendezvous and docking control methods largely rely on predefined dynamic models and often exhibit limited robustness in realistic on-orbit environments. To address this issue, this paper proposes an Imitation Learning-based spacecraft rendezvous and docking control framework (IL-SRD) that directly learns control policies from expert demonstrations, thereby reducing dependence on accurate modeling. We propose an anchored decoder target mechanism, which conditions the decoder queries on state-related anchors to explicitly constrain the control generation process. This mechanism enforces physically consistent control evolution and effectively suppresses implausible action deviations in sequential prediction, enabling reliable six-degree-of-freedom (6-DOF) rendezvous and docking control. To further enhance stability, a temporal aggregation mechanism is incorporated to mitigate error accumulation caused by the sequential prediction nature of Transformer-based models, where small inaccuracies at each time step can propagate and amplify over long horizons. Extensive simulation results demonstrate that the proposed IL-SRD framework achieves accurate and energy-efficient model-free rendezvous and docking control. Robustness evaluations further confirm its capability to maintain competitive performance under significant unknown disturbances. The source code is available at https://github.com/Dongzhou-1996/IL-SRD.
Abstract:While LLM-based agents have shown promise for deep research, most existing approaches rely on fixed workflows that struggle to adapt to real-world, open-ended queries. Recent work therefore explores self-evolution by allowing agents to rewrite their own code or prompts to improve problem-solving ability, but unconstrained optimization often triggers instability, hallucinations, and instruction drift. We propose EvoFSM, a structured self-evolving framework that achieves both adaptability and control by evolving an explicit Finite State Machine (FSM) instead of relying on free-form rewriting. EvoFSM decouples the optimization space into macroscopic Flow (state-transition logic) and microscopic Skill (state-specific behaviors), enabling targeted improvements under clear behavioral boundaries. Guided by a critic mechanism, EvoFSM refines the FSM through a small set of constrained operations, and further incorporates a self-evolving memory that distills successful trajectories as reusable priors and failure patterns as constraints for future queries. Extensive evaluations on five multi-hop QA benchmarks demonstrate the effectiveness of EvoFSM. In particular, EvoFSM reaches 58.0% accuracy on the DeepSearch benchmark. Additional results on interactive decision-making tasks further validate its generalization.
Abstract:Large language models have undergone rapid evolution, emerging as a pivotal technology for intelligence in financial operations. However, existing benchmarks are often constrained by pitfalls such as reliance on simulated or general-purpose samples and a focus on singular, offline static scenarios. Consequently, they fail to align with the requirements for authenticity and real-time responsiveness in financial services, leading to a significant discrepancy between benchmark performance and actual operational efficacy. To address this, we introduce BizFinBench.v2, the first large-scale evaluation benchmark grounded in authentic business data from both Chinese and U.S. equity markets, integrating online assessment. We performed clustering analysis on authentic user queries from financial platforms, resulting in eight fundamental tasks and two online tasks across four core business scenarios, totaling 29,578 expert-level Q&A pairs. Experimental results demonstrate that ChatGPT-5 achieves a prominent 61.5% accuracy in main tasks, though a substantial gap relative to financial experts persists; in online tasks, DeepSeek-R1 outperforms all other commercial LLMs. Error analysis further identifies the specific capability deficiencies of existing models within practical financial business contexts. BizFinBench.v2 transcends the limitations of current benchmarks, achieving a business-level deconstruction of LLM financial capabilities and providing a precise basis for evaluating efficacy in the widespread deployment of LLMs within the financial domain. The data and code are available at https://github.com/HiThink-Research/BizFinBench.v2.
Abstract:Large Language Model(LLM)-based agents have shown strong capabilities in web information seeking, with reinforcement learning (RL) becoming a key optimization paradigm. However, planning remains a bottleneck, as existing methods struggle with long-horizon strategies. Our analysis reveals a critical phenomenon, plan anchor, where the first reasoning step disproportionately impacts downstream behavior in long-horizon web reasoning tasks. Current RL algorithms, fail to account for this by uniformly distributing rewards across the trajectory. To address this, we propose Anchor-GRPO, a two-stage RL framework that decouples planning and execution. In Stage 1, the agent optimizes its first-step planning using fine-grained rubrics derived from self-play experiences and human calibration. In Stage 2, execution is aligned with the initial plan through sparse rewards, ensuring stable and efficient tool usage. We evaluate Anchor-GRPO on four benchmarks: BrowseComp, BrowseComp-Zh, GAIA, and XBench-DeepSearch. Across models from 3B to 30B, Anchor-GRPO outperforms baseline GRPO and First-step GRPO, improving task success and tool efficiency. Notably, WebAnchor-30B achieves 46.0% pass@1 on BrowseComp and 76.4% on GAIA. Anchor-GRPO also demonstrates strong scalability, getting higher accuracy as model size and context length increase.
Abstract:Information-seeking (IS) agents have achieved strong performance across a range of wide and deep search tasks, yet their tool use remains largely restricted to API-level snippet retrieval and URL-based page fetching, limiting access to the richer information available through real browsing. While full browser interaction could unlock deeper capabilities, its fine-grained control and verbose page content returns introduce substantial complexity for ReAct-style function-calling agents. To bridge this gap, we propose Nested Browser-Use Learning (NestBrowse), which introduces a minimal and complete browser-action framework that decouples interaction control from page exploration through a nested structure. This design simplifies agentic reasoning while enabling effective deep-web information acquisition. Empirical results on challenging deep IS benchmarks demonstrate that NestBrowse offers clear benefits in practice. Further in-depth analyses underscore its efficiency and flexibility.
Abstract:Conducting reinforcement learning (RL) in simulated environments offers a cost-effective and highly scalable way to enhance language-based agents. However, previous work has been limited to semi-automated environment synthesis or tasks lacking sufficient difficulty, offering little breadth or depth. In addition, the instability of simulated users integrated into these environments, along with the heterogeneity across simulated environments, poses further challenges for agentic RL. In this work, we propose: (1) a unified pipeline for automated and scalable synthesis of simulated environments associated with high-difficulty but easily verifiable tasks; and (2) an environment level RL algorithm that not only effectively mitigates user instability but also performs advantage estimation at the environment level, thereby improving training efficiency and stability. Comprehensive evaluations on agentic benchmarks, including tau-bench, tau2-Bench, and VitaBench, validate the effectiveness of our proposed method. Further in-depth analyses underscore its out-of-domain generalization.
Abstract:Recent advances in deep-research agents have shown promise for autonomous knowledge construction through dynamic reasoning over external sources. However, existing approaches rely on a mono-contextual paradigm that accumulates all information in a single, expanding context window, leading to context suffocation and noise contamination that limit their effectiveness on long-horizon tasks. We introduce IterResearch, a novel iterative deep-research paradigm that reformulates long-horizon research as a Markov Decision Process with strategic workspace reconstruction. By maintaining an evolving report as memory and periodically synthesizing insights, our approach preserves consistent reasoning capacity across arbitrary exploration depths. We further develop Efficiency-Aware Policy Optimization (EAPO), a reinforcement learning framework that incentivizes efficient exploration through geometric reward discounting and enables stable distributed training via adaptive downsampling. Extensive experiments demonstrate that IterResearch achieves substantial improvements over existing open-source agents with average +14.5pp across six benchmarks and narrows the gap with frontier proprietary systems. Remarkably, our paradigm exhibits unprecedented interaction scaling, extending to 2048 interactions with dramatic performance gains (from 3.5\% to 42.5\%), and serves as an effective prompting strategy, improving frontier models by up to 19.2pp over ReAct on long-horizon tasks. These findings position IterResearch as a versatile solution for long-horizon reasoning, effective both as a trained agent and as a prompting paradigm for frontier models.




Abstract:Transcending human cognitive limitations represents a critical frontier in LLM training. Proprietary agentic systems like DeepResearch have demonstrated superhuman capabilities on extremely complex information-seeking benchmarks such as BrowseComp, a feat previously unattainable. We posit that their success hinges on a sophisticated reasoning pattern absent in open-source models: the ability to systematically reduce extreme uncertainty when navigating vast information landscapes. Based on this insight, we introduce WebSailor, a complete post-training methodology designed to instill this crucial capability. Our approach involves generating novel, high-uncertainty tasks through structured sampling and information obfuscation, RFT cold start, and an efficient agentic RL training algorithm, Duplicating Sampling Policy Optimization (DUPO). With this integrated pipeline, WebSailor significantly outperforms all open-source agents in complex information-seeking tasks, matching proprietary agents' performance and closing the capability gap.




Abstract:Large Language Model (LLM)-based web agents demonstrate strong performance on knowledge-intensive tasks but are hindered by context window limitations in paradigms like ReAct. Complex queries involving multiple entities, intertwined relationships, and high uncertainty demand extensive search cycles that rapidly exhaust context budgets before reaching complete solutions. To overcome this challenge, we introduce ReSum, a novel paradigm that enables indefinite exploration through periodic context summarization. ReSum converts growing interaction histories into compact reasoning states, maintaining awareness of prior discoveries while bypassing context constraints. For paradigm adaptation, we propose ReSum-GRPO, integrating GRPO with segmented trajectory training and advantage broadcasting to familiarize agents with summary-conditioned reasoning. Extensive experiments on web agents of varying scales across three benchmarks demonstrate that ReSum delivers an average absolute improvement of 4.5\% over ReAct, with further gains of up to 8.2\% following ReSum-GRPO training. Notably, with only 1K training samples, our WebResummer-30B (a ReSum-GRPO-trained version of WebSailor-30B) achieves 33.3\% Pass@1 on BrowseComp-zh and 18.3\% on BrowseComp-en, surpassing existing open-source web agents.
Abstract:With the rapid advancement of large language models (LLMs), Multi-agent Systems (MAS) have achieved significant progress in various application scenarios. However, substantial challenges remain in designing versatile, robust, and efficient platforms for agent deployment. To address these limitations, we propose \textbf{LightAgent}, a lightweight yet powerful agentic framework, effectively resolving the trade-off between flexibility and simplicity found in existing frameworks. LightAgent integrates core functionalities such as Memory (mem0), Tools, and Tree of Thought (ToT), while maintaining an extremely lightweight structure. As a fully open-source solution, it seamlessly integrates with mainstream chat platforms, enabling developers to easily build self-learning agents. We have released LightAgent at \href{https://github.com/wxai-space/LightAgent}{https://github.com/wxai-space/LightAgent}