



Abstract:Reconstruction of 3D erythrocyte or red blood cell (RBC) morphology from partial observations, such as microscope images, is essential for understanding the physiology of RBC aging and the pathology of various RBC disorders. In this study, we propose a multi-fidelity neural network (MFNN) approach to fuse high-fidelity cross-sections of an RBC, with a morphologically similar low-fidelity reference 3D RBC shape to recover its full 3D surface. The MFNN predictor combines a convolutional neural network trained on low-fidelity reference RBC data with a feedforward neural network that captures nonlinear morphological correlations, and augments training with surface area and volume constraints for regularization in the low-fidelity branch. This approach is theoretically grounded by a topological homeomorphism between a sphere and 3D RBC surfaces, with training data generated by dissipative particle dynamics simulations of stomatocyte-discocyte-echinocyte transformation. Benchmarking across diverse RBC shapes observed in normal and aged populations, our results show that the MFNN predictor can reconstruct complex RBC morphologies with over 95% coordinate accuracy when provided with at least two orthogonal cross-sections. It is observed that informative oblique cross-sections intersecting spicule tips of echinocytes improve both local and global feature reconstruction, highlighting the value of feature-aware sampling. Our study further evaluates the influence of sampling strategies, shape dissimilarity, and noise, showing enhanced robustness under physically constrained training. Altogether, these results demonstrate the capability of MFNN to reconstruct the 3D shape of normal and aged RBCs from partial cross-sections as observed in conventional microscope images, which could facilitate the quantitative analysis of RBC morphological parameters in normal and disease-related RBC samples.
Abstract:Model watermarking techniques can embed watermark information into the protected model for ownership declaration by constructing specific input-output pairs. However, existing watermarks are easily removed when facing model stealing attacks, and make it difficult for model owners to effectively verify the copyright of stolen models. In this paper, we analyze the root cause of the failure of current watermarking methods under model stealing scenarios and then explore potential solutions. Specifically, we introduce a robust watermarking framework, DeepTracer, which leverages a novel watermark samples construction method and a same-class coupling loss constraint. DeepTracer can incur a high-coupling model between watermark task and primary task that makes adversaries inevitably learn the hidden watermark task when stealing the primary task functionality. Furthermore, we propose an effective watermark samples filtering mechanism that elaborately select watermark key samples used in model ownership verification to enhance the reliability of watermarks. Extensive experiments across multiple datasets and models demonstrate that our method surpasses existing approaches in defending against various model stealing attacks, as well as watermark attacks, and achieves new state-of-the-art effectiveness and robustness.
Abstract:Knowledge about emotional events is an important kind of knowledge which has been applied to improve the effectiveness of different applications. However, emotional events cannot be easily acquired, especially common or generalized emotional events that are context-independent. The goal of this paper is to obtain common emotional events in Chinese language such as "win a prize" and "be criticized". Our approach begins by collecting a comprehensive list of Chinese emotional event indicators. Then, we generate emotional events by prompting a Chinese large language model (LLM) using these indicators. To ensure the quality of these emotional events, we train a filter to discard invalid generated results. We also classify these emotional events as being positive events and negative events using different techniques. Finally, we harvest a total of 102,218 high-quality common emotional events with sentiment polarity labels, which is the only large-scale commonsense knowledge base of emotional events in Chinese language. Intrinsic evaluation results show that the proposed method in this paper can be effectively used to acquire common Chinese emotional events. An extrinsic use case also demonstrates the strong potential of common emotional events in the field of emotion cause extraction (ECE). Related resources including emotional event indicators and emotional events will be released after the publication of this paper.




Abstract:Most visible and infrared image fusion (VIF) methods focus primarily on optimizing fused image quality. Recent studies have begun incorporating downstream tasks, such as semantic segmentation and object detection, to provide semantic guidance for VIF. However, semantic segmentation requires extensive annotations, while object detection, despite reducing annotation efforts compared with segmentation, faces challenges in highly crowded scenes due to overlapping bounding boxes and occlusion. Moreover, although RGB-T crowd counting has gained increasing attention in recent years, no studies have integrated VIF and crowd counting into a unified framework. To address these challenges, we propose FusionCounting, a novel multi-task learning framework that integrates crowd counting into the VIF process. Crowd counting provides a direct quantitative measure of population density with minimal annotation, making it particularly suitable for dense scenes. Our framework leverages both input images and population density information in a mutually beneficial multi-task design. To accelerate convergence and balance tasks contributions, we introduce a dynamic loss function weighting strategy. Furthermore, we incorporate adversarial training to enhance the robustness of both VIF and crowd counting, improving the model's stability and resilience to adversarial attacks. Experimental results on public datasets demonstrate that FusionCounting not only enhances image fusion quality but also achieves superior crowd counting performance.




Abstract:Realizing low-cost communication in robotic mixed reality (RoboMR) systems presents a challenge, due to the necessity of uploading high-resolution images through wireless channels. This paper proposes Gaussian splatting (GS) RoboMR (GSMR), which enables the simulator to opportunistically render a photo-realistic view from the robot's pose by calling ``memory'' from a GS model, thus reducing the need for excessive image uploads. However, the GS model may involve discrepancies compared to the actual environments. To this end, a GS cross-layer optimization (GSCLO) framework is further proposed, which jointly optimizes content switching (i.e., deciding whether to upload image or not) and power allocation (i.e., adjusting to content profiles) across different frames by minimizing a newly derived GSMR loss function. The GSCLO problem is addressed by an accelerated penalty optimization (APO) algorithm that reduces computational complexity by over $10$x compared to traditional branch-and-bound and search algorithms. Moreover, variants of GSCLO are presented to achieve robust, low-power, and multi-robot GSMR. Extensive experiments demonstrate that the proposed GSMR paradigm and GSCLO method achieve significant improvements over existing benchmarks on both wheeled and legged robots in terms of diverse metrics in various scenarios. For the first time, it is found that RoboMR can be achieved with ultra-low communication costs, and mixture of data is useful for enhancing GS performance in dynamic scenarios.




Abstract:Humanoid robots have the potential capability to perform a diverse range of manipulation tasks, but this is based on a robust and precise standing controller. Existing methods are either ill-suited to precisely control high-dimensional upper-body joints, or difficult to ensure both robustness and accuracy, especially when upper-body motions are fast. This paper proposes a novel time optimization policy (TOP), to train a standing manipulation control model that ensures balance, precision, and time efficiency simultaneously, with the idea of adjusting the time trajectory of upper-body motions but not only strengthening the disturbance resistance of the lower-body. Our approach consists of three parts. Firstly, we utilize motion prior to represent upper-body motions to enhance the coordination ability between the upper and lower-body by training a variational autoencoder (VAE). Then we decouple the whole-body control into an upper-body PD controller for precision and a lower-body RL controller to enhance robust stability. Finally, we train TOP method in conjunction with the decoupled controller and VAE to reduce the balance burden resulting from fast upper-body motions that would destabilize the robot and exceed the capabilities of the lower-body RL policy. The effectiveness of the proposed approach is evaluated via both simulation and real world experiments, which demonstrate the superiority on standing manipulation tasks stably and accurately. The project page can be found at https://anonymous.4open.science/w/top-258F/.
Abstract:Federated Graph Learning (FGL) combines the privacy-preserving capabilities of federated learning (FL) with the strong graph modeling capability of Graph Neural Networks (GNNs). Current research addresses subgraph-FL only from the structural perspective, neglecting the propagation of graph signals on spatial and spectral domains of the structure. From a spatial perspective, subgraph-FL introduces edge disconnections between clients, leading to disruptions in label signals and a degradation in the class knowledge of the global GNN. From a spectral perspective, spectral heterogeneity causes inconsistencies in signal frequencies across subgraphs, which makes local GNNs overfit the local signal propagation schemes. As a result, spectral client drifts occur, undermining global generalizability. To tackle the challenges, we propose a global knowledge repository to mitigate label signal disruption and a frequency alignment to address spectral client drifts. The combination of spatial and spectral strategies forms our framework S2FGL. Extensive experiments on multiple datasets demonstrate the superiority of S2FGL. The code is available at https://github.com/Wonder7racer/S2FGL.git.
Abstract:The application of AI in psychiatric diagnosis faces significant challenges, including the subjective nature of mental health assessments, symptom overlap across disorders, and privacy constraints limiting data availability. To address these issues, we present MoodAngels, the first specialized multi-agent framework for mood disorder diagnosis. Our approach combines granular-scale analysis of clinical assessments with a structured verification process, enabling more accurate interpretation of complex psychiatric data. Complementing this framework, we introduce MoodSyn, an open-source dataset of 1,173 synthetic psychiatric cases that preserves clinical validity while ensuring patient privacy. Experimental results demonstrate that MoodAngels outperforms conventional methods, with our baseline agent achieving 12.3% higher accuracy than GPT-4o on real-world cases, and our full multi-agent system delivering further improvements. Evaluation in the MoodSyn dataset demonstrates exceptional fidelity, accurately reproducing both the core statistical patterns and complex relationships present in the original data while maintaining strong utility for machine learning applications. Together, these contributions provide both an advanced diagnostic tool and a critical research resource for computational psychiatry, bridging important gaps in AI-assisted mental health assessment.




Abstract:Humans ponder before articulating complex sentence elements, enabling deeper cognitive processing through focused effort. In this work, we introduce this pondering process into language models by repeatedly invoking the forward process within a single token generation step. During pondering, instead of generating an actual token sampled from the prediction distribution, the model ponders by yielding a weighted sum of all token embeddings according to the predicted token distribution. The generated embedding is then fed back as input for another forward pass. We show that the model can learn to ponder in this way through self-supervised learning, without any human annotations. Our method is straightforward and can be seamlessly integrated with various existing language models. Experiments across three widely used open-source architectures-GPT-2, Pythia, and LLaMA-and extensive downstream task evaluations demonstrate the effectiveness and generality of our method. For language modeling tasks, pondering language models achieve performance comparable to vanilla models with twice the number of parameters. On 9 downstream benchmarks, our pondering-enhanced Pythia models significantly outperform the official Pythia models. Notably, pondering-enhanced Pythia-1B is comparable to TinyLlama-1.1B, which is trained on 10 times more data. The code is available at https://github.com/LUMIA-Group/PonderingLM.




Abstract:Hallucinations -- plausible yet erroneous outputs -- remain a critical barrier to reliable deployment of large language models (LLMs). We present the first systematic study linking hallucination incidence to internal-state drift induced by incremental context injection. Using TruthfulQA, we construct two 16-round "titration" tracks per question: one appends relevant but partially flawed snippets, the other injects deliberately misleading content. Across six open-source LLMs, we track overt hallucination rates with a tri-perspective detector and covert dynamics via cosine, entropy, JS and Spearman drifts of hidden states and attention maps. Results reveal (1) monotonic growth of hallucination frequency and representation drift that plateaus after 5--7 rounds; (2) relevant context drives deeper semantic assimilation, producing high-confidence "self-consistent" hallucinations, whereas irrelevant context induces topic-drift errors anchored by attention re-routing; and (3) convergence of JS-Drift ($\sim0.69$) and Spearman-Drift ($\sim0$) marks an "attention-locking" threshold beyond which hallucinations solidify and become resistant to correction. Correlation analyses expose a seesaw between assimilation capacity and attention diffusion, clarifying size-dependent error modes. These findings supply empirical foundations for intrinsic hallucination prediction and context-aware mitigation mechanisms.