Alert button
Picture for Rui Yang

Rui Yang

Alert button

MedGen: A Python Natural Language Processing Toolkit for Medical Text Processing

Nov 28, 2023
Rui Yang, Qingcheng Zeng, Keen You, Yujie Qiao, Lucas Huang, Chia-Chun Hsieh, Benjamin Rosand, Jeremy Goldwasser, Amisha D Dave, Tiarnan D. L. Keenan, Emily Y Chew, Dragomir Radev, Zhiyong Lu, Hua Xu, Qingyu Chen, Irene Li

This study introduces MedGen, a comprehensive natural language processing (NLP) toolkit designed for medical text processing. MedGen is tailored for biomedical researchers and healthcare professionals with an easy-to-use, all-in-one solution that requires minimal programming expertise. It includes (1) Generative Functions: For the first time, MedGen includes four advanced generative functions: question answering, text summarization, text simplification, and machine translation; (2) Basic NLP Functions: MedGen integrates 12 essential NLP functions such as word tokenization and sentence segmentation; and (3) Query and Search Capabilities: MedGen provides user-friendly query and search functions on text corpora. We fine-tuned 32 domain-specific language models, evaluated them thoroughly on 24 established benchmarks and conducted manual reviews with clinicians. Additionally, we expanded our toolkit by introducing query and search functions, while also standardizing and integrating functions from third-party libraries. The toolkit, its models, and associated data are publicly available via https://github.com/Yale-LILY/MedGen.

* 5 figures, 4 tables 
Viaarxiv icon

A Data-Driven Approach for High-Impedance Fault Localization in Distribution Systems

Nov 26, 2023
Yuqi Zhou, Yuqing Dong, Rui Yang

Accurate and quick identification of high-impedance faults is critical for the reliable operation of distribution systems. Unlike other faults in power grids, HIFs are very difficult to detect by conventional overcurrent relays due to the low fault current. Although HIFs can be affected by various factors, the voltage current characteristics can substantially imply how the system responds to the disturbance and thus provides opportunities to effectively localize HIFs. In this work, we propose a data-driven approach for the identification of HIF events. To tackle the nonlinearity of the voltage current trajectory, first, we formulate optimization problems to approximate the trajectory with piecewise functions. Then we collect the function features of all segments as inputs and use the support vector machine approach to efficiently identify HIFs at different locations. Numerical studies on the IEEE 123-node test feeder demonstrate the validity and accuracy of the proposed approach for real-time HIF identification.

Viaarxiv icon

Enhancing Emergency Decision-making with Knowledge Graphs and Large Language Models

Nov 15, 2023
Minze Chen, Zhenxiang Tao, Weitong Tang, Tingxin Qin, Rui Yang, Chunli Zhu

Emergency management urgently requires comprehensive knowledge while having a high possibility to go beyond individuals' cognitive scope. Therefore, artificial intelligence(AI) supported decision-making under that circumstance is of vital importance. Recent emerging large language models (LLM) provide a new direction for enhancing targeted machine intelligence. However, the utilization of LLM directly would inevitably introduce unreliable output for its inherent issue of hallucination and poor reasoning skills. In this work, we develop a system called Enhancing Emergency decision-making with Knowledge Graph and LLM (E-KELL), which provides evidence-based decision-making in various emergency stages. The study constructs a structured emergency knowledge graph and guides LLMs to reason over it via a prompt chain. In real-world evaluations, E-KELL receives scores of 9.06, 9.09, 9.03, and 9.09 in comprehensibility, accuracy, conciseness, and instructiveness from a group of emergency commanders and firefighters, demonstrating a significant improvement across various situations compared to baseline models. This work introduces a novel approach to providing reliable emergency decision support.

* 26 pages, 6 figures 
Viaarxiv icon

GOPlan: Goal-conditioned Offline Reinforcement Learning by Planning with Learned Models

Oct 30, 2023
Mianchu Wang, Rui Yang, Xi Chen, Meng Fang

Offline goal-conditioned RL (GCRL) offers a feasible paradigm to learn general-purpose policies from diverse and multi-task offline datasets. Despite notable recent progress, the predominant offline GCRL methods have been restricted to model-free approaches, constraining their capacity to tackle limited data budgets and unseen goal generalization. In this work, we propose a novel two-stage model-based framework, Goal-conditioned Offline Planning (GOPlan), including (1) pretraining a prior policy capable of capturing multi-modal action distribution within the multi-goal dataset; (2) employing the reanalysis method with planning to generate imagined trajectories for funetuning policies. Specifically, the prior policy is based on an advantage-weighted Conditioned Generative Adversarial Networks that exhibits distinct mode separation to overcome the pitfalls of out-of-distribution (OOD) actions. For further policy optimization, the reanalysis method generates high-quality imaginary data by planning with learned models for both intra-trajectory and inter-trajectory goals. Through experimental evaluations, we demonstrate that GOPlan achieves state-of-the-art performance on various offline multi-goal manipulation tasks. Moreover, our results highlight the superior ability of GOPlan to handle small data budgets and generalize to OOD goals.

* Spotlight Presentation at Goal-conditioned Reinforcement Learning Workshop at NeurIPS, 2023 
Viaarxiv icon

State Sequences Prediction via Fourier Transform for Representation Learning

Oct 24, 2023
Mingxuan Ye, Yufei Kuang, Jie Wang, Rui Yang, Wengang Zhou, Houqiang Li, Feng Wu

While deep reinforcement learning (RL) has been demonstrated effective in solving complex control tasks, sample efficiency remains a key challenge due to the large amounts of data required for remarkable performance. Existing research explores the application of representation learning for data-efficient RL, e.g., learning predictive representations by predicting long-term future states. However, many existing methods do not fully exploit the structural information inherent in sequential state signals, which can potentially improve the quality of long-term decision-making but is difficult to discern in the time domain. To tackle this problem, we propose State Sequences Prediction via Fourier Transform (SPF), a novel method that exploits the frequency domain of state sequences to extract the underlying patterns in time series data for learning expressive representations efficiently. Specifically, we theoretically analyze the existence of structural information in state sequences, which is closely related to policy performance and signal regularity, and then propose to predict the Fourier transform of infinite-step future state sequences to extract such information. One of the appealing features of SPF is that it is simple to implement while not requiring storage of infinite-step future states as prediction targets. Experiments demonstrate that the proposed method outperforms several state-of-the-art algorithms in terms of both sample efficiency and performance.

Viaarxiv icon

Corruption-Robust Offline Reinforcement Learning with General Function Approximation

Oct 23, 2023
Chenlu Ye, Rui Yang, Quanquan Gu, Tong Zhang

We investigate the problem of corruption robustness in offline reinforcement learning (RL) with general function approximation, where an adversary can corrupt each sample in the offline dataset, and the corruption level $\zeta\geq0$ quantifies the cumulative corruption amount over $n$ episodes and $H$ steps. Our goal is to find a policy that is robust to such corruption and minimizes the suboptimality gap with respect to the optimal policy for the uncorrupted Markov decision processes (MDPs). Drawing inspiration from the uncertainty-weighting technique from the robust online RL setting \citep{he2022nearly,ye2022corruptionrobust}, we design a new uncertainty weight iteration procedure to efficiently compute on batched samples and propose a corruption-robust algorithm for offline RL. Notably, under the assumption of single policy coverage and the knowledge of $\zeta$, our proposed algorithm achieves a suboptimality bound that is worsened by an additive factor of $\mathcal O(\zeta \cdot (\text{CC}(\lambda,\hat{\mathcal F},\mathcal Z_n^H))^{1/2} (C(\hat{\mathcal F},\mu))^{-1/2} n^{-1})$ due to the corruption. Here $\text{CC}(\lambda,\hat{\mathcal F},\mathcal Z_n^H)$ is the coverage coefficient that depends on the regularization parameter $\lambda$, the confidence set $\hat{\mathcal F}$, and the dataset $\mathcal Z_n^H$, and $C(\hat{\mathcal F},\mu)$ is a coefficient that depends on $\hat{\mathcal F}$ and the underlying data distribution $\mu$. When specialized to linear MDPs, the corruption-dependent error term reduces to $\mathcal O(\zeta d n^{-1})$ with $d$ being the dimension of the feature map, which matches the existing lower bound for corrupted linear MDPs. This suggests that our analysis is tight in terms of the corruption-dependent term.

* Neurips 2023 
Viaarxiv icon

Towards Robust Offline Reinforcement Learning under Diverse Data Corruption

Oct 19, 2023
Rui Yang, Han Zhong, Jiawei Xu, Amy Zhang, Chongjie Zhang, Lei Han, Tong Zhang

Offline reinforcement learning (RL) presents a promising approach for learning reinforced policies from offline datasets without the need for costly or unsafe interactions with the environment. However, datasets collected by humans in real-world environments are often noisy and may even be maliciously corrupted, which can significantly degrade the performance of offline RL. In this work, we first investigate the performance of current offline RL algorithms under comprehensive data corruption, including states, actions, rewards, and dynamics. Our extensive experiments reveal that implicit Q-learning (IQL) demonstrates remarkable resilience to data corruption among various offline RL algorithms. Furthermore, we conduct both empirical and theoretical analyses to understand IQL's robust performance, identifying its supervised policy learning scheme as the key factor. Despite its relative robustness, IQL still suffers from heavy-tail targets of Q functions under dynamics corruption. To tackle this challenge, we draw inspiration from robust statistics to employ the Huber loss to handle the heavy-tailedness and utilize quantile estimators to balance penalization for corrupted data and learning stability. By incorporating these simple yet effective modifications into IQL, we propose a more robust offline RL approach named Robust IQL (RIQL). Extensive experiments demonstrate that RIQL exhibits highly robust performance when subjected to diverse data corruption scenarios.

* 31 pages, 17 figures 
Viaarxiv icon

Integrating UMLS Knowledge into Large Language Models for Medical Question Answering

Oct 13, 2023
Rui Yang, Edison Marrese-Taylor, Yuhe Ke, Lechao Cheng, Qingyu Chen, Irene Li

Large language models (LLMs) have demonstrated powerful text generation capabilities, bringing unprecedented innovation to the healthcare field. While LLMs hold immense promise for applications in healthcare, applying them to real clinical scenarios presents significant challenges, as these models may generate content that deviates from established medical facts and even exhibit potential biases. In our research, we develop an augmented LLM framework based on the Unified Medical Language System (UMLS), aiming to better serve the healthcare community. We employ LLaMa2-13b-chat and ChatGPT-3.5 as our benchmark models, and conduct automatic evaluations using the ROUGE Score and BERTScore on 104 questions from the LiveQA test set. Additionally, we establish criteria for physician-evaluation based on four dimensions: Factuality, Completeness, Readability and Relevancy. ChatGPT-3.5 is used for physician evaluation with 20 questions on the LiveQA test set. Multiple resident physicians conducted blind reviews to evaluate the generated content, and the results indicate that this framework effectively enhances the factuality, completeness, and relevance of generated content. Our research demonstrates the effectiveness of using UMLS-augmented LLMs and highlights the potential application value of LLMs in in medical question-answering.

* 12 pages, 3 figures 
Viaarxiv icon

CP-KGC: Constrained-Prompt Knowledge Graph Completion with Large Language Models

Oct 12, 2023
Rui Yang, Li Fang, Yi Zhou

Figure 1 for CP-KGC: Constrained-Prompt Knowledge Graph Completion with Large Language Models
Figure 2 for CP-KGC: Constrained-Prompt Knowledge Graph Completion with Large Language Models
Figure 3 for CP-KGC: Constrained-Prompt Knowledge Graph Completion with Large Language Models
Figure 4 for CP-KGC: Constrained-Prompt Knowledge Graph Completion with Large Language Models

Knowledge graph completion (KGC) aims to utilize existing knowledge to deduce and infer missing connections within knowledge graphs. Text-based approaches, like SimKGC, have outperformed graph embedding methods, showcasing the promise of inductive KGC. However, the efficacy of text-based methods hinges on the quality of entity textual descriptions. In this paper, we identify the key issue of whether large language models (LLMs) can generate effective text. To mitigate hallucination in LLM-generated text in this paper, we introduce a constraint-based prompt that utilizes the entity and its textual description as contextual constraints to enhance data quality. Our Constrained-Prompt Knowledge Graph Completion (CP-KGC) method demonstrates effective inference under low resource computing conditions and surpasses prior results on the WN18RR and FB15K237 datasets. This showcases the integration of LLMs in KGC tasks and provides new directions for future research.

Viaarxiv icon

A UMLS-Augmented Framework for Improving Factuality in Large Language Models within Healthcare

Oct 04, 2023
Rui Yang, Edison Marrese-Taylor, Yuhe Ke, Lechao Cheng, Qingyu Chen, Irene Li

Large language models (LLMs) have demonstrated powerful text generation capabilities, bringing unprecedented innovation to the healthcare field. While LLMs hold immense promise for applications in healthcare, applying them to real clinical scenarios presents significant challenges, as these models may generate content that deviates from established medical facts and even exhibit potential biases. In our research, we develop an augmented LLM framework based on the Unified Medical Language System (UMLS), aiming to better serve the healthcare community. We employ LLaMa2-13b-chat and ChatGPT-3.5 as our benchmark models, and conduct automatic evaluations using the ROUGE Score and BERTScore on 104 questions from the LiveQA test set. Additionally, we establish criteria for physician-evaluation based on four dimensions: Factuality, Completeness, Readability and Relevancy. ChatGPT-3.5 is used for physician evaluation with 20 questions on the LiveQA test set. Multiple resident physicians conducted blind reviews to evaluate the generated content, and the results indicate that this framework effectively enhances the factuality, completeness, and relevance of generated content. Our research demonstrates the effectiveness of using UMLS-augmented LLMs and highlights the potential application value of LLMs in in medical question-answering.

* 12 pages, 3 figures 
Viaarxiv icon