Abstract:Radar-based contactless cardiac monitoring has become a popular research direction recently, but the fine-grained electrocardiogram (ECG) signal is still hard to reconstruct from millimeter-wave radar signal. The key obstacle is to decouple the cardiac activities in the electrical domain (i.e., ECG) from that in the mechanical domain (i.e., heartbeat), and most existing research only uses pure data-driven methods to map such domain transformation as a black box. Therefore, this work first proposes a signal model for domain transformation, and then a novel deep learning framework called radarODE is designed to fuse the temporal and morphological features extracted from radar signals and generate ECG. In addition, ordinary differential equations are embedded in radarODE as a decoder to provide morphological prior, helping the convergence of the model training and improving the robustness under body movements. After being validated on the dataset, the proposed radarODE achieves better performance compared with the benchmark in terms of missed detection rate, root mean square error, Pearson correlation coefficient with the improvement of 9%, 16% and 19%, respectively. The validation results imply that radarODE is capable of recovering ECG signals from radar signals with high fidelity and can be potentially implemented in real-life scenarios.
Abstract:High-speed railway (HSR) communications are pivotal for ensuring rail safety, operations, maintenance, and delivering passenger information services. The high speed of trains creates rapidly time-varying wireless channels, increases the signaling overhead, and reduces the system throughput, making it difficult to meet the growing and stringent needs of HSR applications. In this article, we explore artificial intelligence (AI)-based beam-level and cell-level mobility management suitable for HSR communications, including the use cases, inputs, outputs, and key performance indicators (KPI)s of AI models. Particularly, in comparison to traditional down-sampling spatial beam measurements, we show that the compressed spatial multi-beam measurements via compressive sensing lead to improved spatial-temporal beam prediction. Moreover, we demonstrate the performance gains of AI-assisted cell handover over traditional mobile handover mechanisms. In addition, we observe that the proposed approaches to reduce the measurement overhead achieve comparable radio link failure performance with the traditional approach that requires all the beam measurements of all cells, while the former methods can save 50% beam measurement overhead.
Abstract:State-of-the-art ASRs show suboptimal performance for child speech. The scarcity of child speech limits the development of child speech recognition (CSR). Therefore, we studied child-to-child voice conversion (VC) from existing child speakers in the dataset and additional (new) child speakers via monolingual and cross-lingual (Dutch-to-German) VC, respectively. The results showed that cross-lingual child-to-child VC significantly improved child ASR performance. Experiments on the impact of the quantity of child-to-child cross-lingual VC-generated data on fine-tuning (FT) ASR models gave the best results with two-fold augmentation for our FT-Conformer model and FT-Whisper model which reduced WERs with ~3% absolute compared to the baseline, and with six-fold augmentation for the model trained from scratch, which improved by an absolute 3.6% WER. Moreover, using a small amount of "high-quality" VC-generated data achieved similar results to those of our best-FT models.
Abstract:Automatic speech recognition (ASR) should serve every speaker, not only the majority ``standard'' speakers of a language. In order to build inclusive ASR, mitigating the bias against speaker groups who speak in a ``non-standard'' or ``diverse'' way is crucial. We aim to mitigate the bias against non-native-accented Flemish in a Flemish ASR system. Since this is a low-resource problem, we investigate the optimal type of data augmentation, i.e., speed/pitch perturbation, cross-lingual voice conversion-based methods, and SpecAugment, applied to both native Flemish and non-native-accented Flemish, for bias mitigation. The results showed that specific types of data augmentation applied to both native and non-native-accented speech improve non-native-accented ASR while applying data augmentation to the non-native-accented speech is more conducive to bias reduction. Combining both gave the largest bias reduction for human-machine interaction (HMI) as well as read-type speech.
Abstract:Recent advances in deep learning and automatic speech recognition (ASR) have enabled the end-to-end (E2E) ASR system and boosted the accuracy to a new level. The E2E systems implicitly model all conventional ASR components, such as the acoustic model (AM) and the language model (LM), in a single network trained on audio-text pairs. Despite this simpler system architecture, fusing a separate LM, trained exclusively on text corpora, into the E2E system has proven to be beneficial. However, the application of LM fusion presents certain drawbacks, such as its inability to address the domain mismatch issue inherent to the internal AM. Drawing inspiration from the concept of LM fusion, we propose the integration of an external AM into the E2E system to better address the domain mismatch. By implementing this novel approach, we have achieved a significant reduction in the word error rate, with an impressive drop of up to 14.3% across varied test sets. We also discovered that this AM fusion approach is particularly beneficial in enhancing named entity recognition.
Abstract:Voice technology has become ubiquitous recently. However, the accuracy, and hence experience, in different languages varies significantly, which makes the technology not equally inclusive. The availability of data for different languages is one of the key factors affecting accuracy, especially in training of all-neural end-to-end automatic speech recognition systems. Cross-lingual knowledge transfer and iterative pseudo-labeling are two techniques that have been shown to be successful for improving the accuracy of ASR systems, in particular for low-resource languages, like Ukrainian. Our goal is to train an all-neural Transducer-based ASR system to replace a DNN-HMM hybrid system with no manually annotated training data. We show that the Transducer system trained using transcripts produced by the hybrid system achieves 18% reduction in terms of word error rate. However, using a combination of cross-lingual knowledge transfer from related languages and iterative pseudo-labeling, we are able to achieve 35% reduction of the error rate.
Abstract:Multimodal emotion recognition is a challenging task in emotion computing as it is quite difficult to extract discriminative features to identify the subtle differences in human emotions with abstract concept and multiple expressions. Moreover, how to fully utilize both audio and visual information is still an open problem. In this paper, we propose a novel multimodal fusion attention network for audio-visual emotion recognition based on adaptive and multi-level factorized bilinear pooling (FBP). First, for the audio stream, a fully convolutional network (FCN) equipped with 1-D attention mechanism and local response normalization is designed for speech emotion recognition. Next, a global FBP (G-FBP) approach is presented to perform audio-visual information fusion by integrating selfattention based video stream with the proposed audio stream. To improve G-FBP, an adaptive strategy (AG-FBP) to dynamically calculate the fusion weight of two modalities is devised based on the emotion-related representation vectors from the attention mechanism of respective modalities. Finally, to fully utilize the local emotion information, adaptive and multi-level FBP (AMFBP) is introduced by combining both global-trunk and intratrunk data in one recording on top of AG-FBP. Tested on the IEMOCAP corpus for speech emotion recognition with only audio stream, the new FCN method outperforms the state-ofthe-art results with an accuracy of 71.40%. Moreover, validated on the AFEW database of EmotiW2019 sub-challenge and the IEMOCAP corpus for audio-visual emotion recognition, the proposed AM-FBP approach achieves the best accuracy of 63.09% and 75.49% respectively on the test set.
Abstract:The audio-video based emotion recognition aims to classify a given video into basic emotions. In this paper, we describe our approaches in EmotiW 2019, which mainly explores emotion features and feature fusion strategies for audio and visual modality. For emotion features, we explore audio feature with both speech-spectrogram and Log Mel-spectrogram and evaluate several facial features with different CNN models and different emotion pretrained strategies. For fusion strategies, we explore intra-modal and cross-modal fusion methods, such as designing attention mechanisms to highlights important emotion feature, exploring feature concatenation and factorized bilinear pooling (FBP) for cross-modal feature fusion. With careful evaluation, we obtain 65.5% on the AFEW validation set and 62.48% on the test set and rank third in the challenge.
Abstract:Inspired by SpecAugment -- a data augmentation method for end-to-end ASR systems, we propose a frame-level SpecAugment method (f-SpecAugment) to improve the performance of deep convolutional neural networks (CNN) for hybrid HMM based ASR systems. Similar to the utterance level SpecAugment, f-SpecAugment performs three transformations: time warping, frequency masking, and time masking. Instead of applying the transformations at the utterance level, f-SpecAugment applies them to each convolution window independently during training. We demonstrate that f-SpecAugment is more effective than the utterance level SpecAugment for deep CNN based hybrid models. We evaluate the proposed f-SpecAugment on 50-layer Self-Normalizing Deep CNN (SNDCNN) acoustic models trained with up to 25000 hours of training data. We observe f-SpecAugment reduces WER by 0.5-4.5% relatively across different ASR tasks for four languages. As the benefits of augmentation techniques tend to diminish as training data size increases, the large scale training reported is important in understanding the effectiveness of f-SpecAugment. Our experiments demonstrate that even with 25k training data, f-SpecAugment is still effective. We also demonstrate that f-SpecAugment has benefits approximately equivalent to doubling the amount of training data for deep CNNs.
Abstract:Most galaxies in the nearby Universe are gravitationally bound to a cluster or group of galaxies. Their optical contents, such as optical richness, are crucial for understanding the co-evolution of galaxies and large-scale structures in modern astronomy and cosmology. The determination of optical richness can be challenging. We propose a self-supervised approach for estimating optical richness from multi-band optical images. The method uses the data properties of the multi-band optical images for pre-training, which enables learning feature representations from a large but unlabeled dataset. We apply the proposed method to the Sloan Digital Sky Survey. The result shows our estimate of optical richness lowers the mean absolute error and intrinsic scatter by 11.84% and 20.78%, respectively, while reducing the need for labeled training data by up to 60%. We believe the proposed method will benefit astronomy and cosmology, where a large number of unlabeled multi-band images are available, but acquiring image labels is costly.