Abstract:Irregular Multivariate Time Series (IMTS) forecasting is challenging due to the unaligned nature of multi-channel signals and the prevalence of extensive missing data. Existing methods struggle to capture reliable temporal patterns from such data due to significant missing values. While pre-trained foundation models show potential for addressing these challenges, they are typically designed for Regularly Sampled Time Series (RTS). Motivated by the visual Mask AutoEncoder's (MAE) powerful capability for modeling sparse multi-channel information and its success in RTS forecasting, we propose VIMTS, a framework adapting Visual MAE for IMTS forecasting. To mitigate the effect of missing values, VIMTS first processes IMTS along the timeline into feature patches at equal intervals. These patches are then complemented using learned cross-channel dependencies. Then it leverages visual MAE's capability in handling sparse multichannel data for patch reconstruction, followed by a coarse-to-fine technique to generate precise predictions from focused contexts. In addition, we integrate self-supervised learning for improved IMTS modeling by adapting the visual MAE to IMTS data. Extensive experiments demonstrate VIMTS's superior performance and few-shot capability, advancing the application of visual foundation models in more general time series tasks. Our code is available at https://github.com/WHU-HZY/VIMTS.
Abstract:Large Vision Language Models (LVLMs) have achieved remarkable progress in multimodal tasks, yet they also exhibit notable social biases. These biases often manifest as unintended associations between neutral concepts and sensitive human attributes, leading to disparate model behaviors across demographic groups. While existing studies primarily focus on detecting and quantifying such biases, they offer limited insight into the underlying mechanisms within the models. To address this gap, we propose an explanatory framework that combines information flow analysis with multi-round dialogue evaluation, aiming to understand the origin of social bias from the perspective of imbalanced internal information utilization. Specifically, we first identify high-contribution image tokens involved in the model's reasoning process for neutral questions via information flow analysis. Then, we design a multi-turn dialogue mechanism to evaluate the extent to which these key tokens encode sensitive information. Extensive experiments reveal that LVLMs exhibit systematic disparities in information usage when processing images of different demographic groups, suggesting that social bias is deeply rooted in the model's internal reasoning dynamics. Furthermore, we complement our findings from a textual modality perspective, showing that the model's semantic representations already display biased proximity patterns, thereby offering a cross-modal explanation of bias formation.
Abstract:Automating robust hypothesis generation in open environments is pivotal for AI cognition. We introduce a novel framework integrating a multi-agent system, powered by Large Language Models (LLMs), with Inductive Logic Programming (ILP). Our system's LLM agents autonomously define a structured symbolic vocabulary (predicates) and relational templates , i.e., \emph{language bias} directly from raw textual data. This automated symbolic grounding (the construction of the language bias), traditionally an expert-driven bottleneck for ILP, then guides the transformation of text into facts for an ILP solver, which inductively learns interpretable rules. This approach overcomes traditional ILP's reliance on predefined symbolic structures and the noise-sensitivity of pure LLM methods. Extensive experiments in diverse, challenging scenarios validate superior performance, paving a new path for automated, explainable, and verifiable hypothesis generation.
Abstract:The rise of Large Language Models (LLMs) like ChatGPT has advanced natural language processing, yet concerns about cognitive biases are growing. In this paper, we investigate the anchoring effect, a cognitive bias where the mind relies heavily on the first information as anchors to make affected judgments. We explore whether LLMs are affected by anchoring, the underlying mechanisms, and potential mitigation strategies. To facilitate studies at scale on the anchoring effect, we introduce a new dataset, SynAnchors. Combining refined evaluation metrics, we benchmark current widely used LLMs. Our findings show that LLMs' anchoring bias exists commonly with shallow-layer acting and is not eliminated by conventional strategies, while reasoning can offer some mitigation. This recontextualization via cognitive psychology urges that LLM evaluations focus not on standard benchmarks or over-optimized robustness tests, but on cognitive-bias-aware trustworthy evaluation.
Abstract:Radar-based wellness monitoring is becoming an effective measurement to provide accurate vital signs in a contactless manner, but data scarcity retards the related research on deep-learning-based methods. Data augmentation is commonly used to enrich the dataset by modifying the existing data, but most augmentation techniques can only couple with classification tasks. To enable the augmentation for regression tasks, this research proposes a spectrogram augmentation method, Horcrux, for radar-based cardiac feature monitoring (e.g., heartbeat detection, electrocardiogram reconstruction) with both classification and regression tasks involved. The proposed method is designed to increase the diversity of input samples while the augmented spectrogram is still faithful to the original ground truth vital sign. In addition, Horcrux proposes to inject zero values in specific areas to enhance the awareness of the deep learning model on subtle cardiac features, improving the performance for the limited dataset. Experimental result shows that Horcrux achieves an overall improvement of 16.20% in cardiac monitoring and has the potential to be extended to other spectrogram-based tasks. The code will be released upon publication.
Abstract:In real-world time series forecasting, uncertainty and lack of reliable evaluation pose significant challenges. Notably, forecasting errors often arise from underfitting in-distribution data and failing to handle out-of-distribution inputs. To enhance model reliability, we introduce a dual rejection mechanism combining ambiguity and novelty rejection. Ambiguity rejection, using prediction error variance, allows the model to abstain under low confidence, assessed through historical error variance analysis without future ground truth. Novelty rejection, employing Variational Autoencoders and Mahalanobis distance, detects deviations from training data. This dual approach improves forecasting reliability in dynamic environments by reducing errors and adapting to data changes, advancing reliability in complex scenarios.
Abstract:As a significant application of multi-source information fusion in intelligent transportation perception systems, Referring Multi-Object Tracking (RMOT) involves localizing and tracking specific objects in video sequences based on language references. However, existing RMOT approaches often treat language descriptions as holistic embeddings and struggle to effectively integrate the rich semantic information contained in language expressions with visual features. This limitation is especially apparent in complex scenes requiring comprehensive understanding of both static object attributes and spatial motion information. In this paper, we propose a Cognitive Disentanglement for Referring Multi-Object Tracking (CDRMT) framework that addresses these challenges. It adapts the "what" and "where" pathways from human visual processing system to RMOT tasks. Specifically, our framework comprises three collaborative components: (1)The Bidirectional Interactive Fusion module first establishes cross-modal connections while preserving modality-specific characteristics; (2) Building upon this foundation, the Progressive Semantic-Decoupled Query Learning mechanism hierarchically injects complementary information into object queries, progressively refining object understanding from coarse to fine-grained semantic levels; (3) Finally, the Structural Consensus Constraint enforces bidirectional semantic consistency between visual features and language descriptions, ensuring that tracked objects faithfully reflect the referring expression. Extensive experiments on different benchmark datasets demonstrate that CDRMT achieves substantial improvements over state-of-the-art methods, with average gains of 6.0% in HOTA score on Refer-KITTI and 3.2% on Refer-KITTI-V2. Our approach advances the state-of-the-art in RMOT while simultaneously providing new insights into multi-source information fusion.
Abstract:Embodied outdoor scene understanding forms the foundation for autonomous agents to perceive, analyze, and react to dynamic driving environments. However, existing 3D understanding is predominantly based on 2D Vision-Language Models (VLMs), collecting and processing limited scene-aware contexts. Instead, compared to the 2D planar visual information, point cloud sensors like LiDAR offer rich depth information and fine-grained 3D representations of objects. Meanwhile, the emerging 4D millimeter-wave (mmWave) radar is capable of detecting the motion trend, velocity, and reflection intensity of each object. Therefore, the integration of these two modalities provides more flexible querying conditions for natural language, enabling more accurate 3D visual grounding. To this end, in this paper, we exploratively propose a novel method called TPCNet, the first outdoor 3D visual grounding model upon the paradigm of prompt-guided point cloud sensor combination, including both LiDAR and radar contexts. To adaptively balance the features of these two sensors required by the prompt, we have designed a multi-fusion paradigm called Two-Stage Heterogeneous Modal Adaptive Fusion. Specifically, this paradigm initially employs Bidirectional Agent Cross-Attention (BACA), which feeds dual-sensor features, characterized by global receptive fields, to the text features for querying. Additionally, we have designed a Dynamic Gated Graph Fusion (DGGF) module to locate the regions of interest identified by the queries. To further enhance accuracy, we innovatively devise an C3D-RECHead, based on the nearest object edge. Our experiments have demonstrated that our TPCNet, along with its individual modules, achieves the state-of-the-art performance on both the Talk2Radar and Talk2Car datasets.
Abstract:Naturalistic driving action recognition is essential for vehicle cabin monitoring systems. However, the complexity of real-world backgrounds presents significant challenges for this task, and previous approaches have struggled with practical implementation due to their limited ability to observe subtle behavioral differences and effectively learn inter-frame features from video. In this paper, we propose a novel Spatial-Temporal Perception (STP) architecture that emphasizes both temporal information and spatial relationships between key objects, incorporating a causal decoder to perform behavior recognition and temporal action localization. Without requiring multimodal input, STP directly extracts temporal and spatial distance features from RGB video clips. Subsequently, these dual features are jointly encoded by maximizing the expected likelihood across all possible permutations of the factorization order. By integrating temporal and spatial features at different scales, STP can perceive subtle behavioral changes in challenging scenarios. Additionally, we introduce a causal-aware module to explore relationships between video frame features, significantly enhancing detection efficiency and performance. We validate the effectiveness of our approach using two publicly available driver distraction detection benchmarks. The results demonstrate that our framework achieves state-of-the-art performance.
Abstract:Biomedical visual question answering (VQA) has been widely studied and has demonstrated significant application value and potential in fields such as assistive medical diagnosis. Despite their success, current biomedical VQA models perform multimodal information interaction only at the model level within large language models (LLMs), leading to suboptimal multimodal semantic alignment when dealing with complex tasks. To address this issue, we propose BioD2C: a novel Dual-level Semantic Consistency Constraint Framework for Biomedical VQA, which achieves dual-level semantic interaction alignment at both the model and feature levels, enabling the model to adaptively learn visual features based on the question. Specifically, we firstly integrate textual features into visual features via an image-text fusion mechanism as feature-level semantic interaction, obtaining visual features conditioned on the given text; and then introduce a text-queue-based cross-modal soft semantic loss function to further align the image semantics with the question semantics. Specifically, in this work, we establish a new dataset, BioVGQ, to address inherent biases in prior datasets by filtering manually-altered images and aligning question-answer pairs with multimodal context, and train our model on this dataset. Extensive experimental results demonstrate that BioD2C achieves state-of-the-art (SOTA) performance across multiple downstream datasets, showcasing its robustness, generalizability, and potential to advance biomedical VQA research.