LIRMM | ADAC
Abstract:We present a general purpose probabilistic forecasting framework, ProbHardE2E, to learn systems that can incorporate operational/physical constraints as hard requirements. ProbHardE2E enforces hard constraints by exploiting variance information in a novel way; and thus it is also capable of performing uncertainty quantification (UQ) on the model. Our methodology uses a novel differentiable probabilistic projection layer (DPPL) that can be combined with a wide range of neural network architectures. This DPPL allows the model to learn the system in an end-to-end manner, compared to other approaches where the constraints are satisfied either through a post-processing step or at inference. In addition, ProbHardE2E can optimize a strictly proper scoring rule, without making any distributional assumptions on the target, which enables it to obtain robust distributional estimates (in contrast to existing approaches that generally optimize likelihood-based objectives, which are heavily biased by their distributional assumptions and model choices); and it can incorporate a range of non-linear constraints (increasing the power of modeling and flexibility). We apply ProbHardE2E to problems in learning partial differential equations with uncertainty estimates and to probabilistic time-series forecasting, showcasing it as a broadly applicable general setup that connects these seemingly disparate domains.
Abstract:We present STARFlow, a scalable generative model based on normalizing flows that achieves strong performance in high-resolution image synthesis. The core of STARFlow is Transformer Autoregressive Flow (TARFlow), which combines the expressive power of normalizing flows with the structured modeling capabilities of Autoregressive Transformers. We first establish the theoretical universality of TARFlow for modeling continuous distributions. Building on this foundation, we introduce several key architectural and algorithmic innovations to significantly enhance scalability: (1) a deep-shallow design, wherein a deep Transformer block captures most of the model representational capacity, complemented by a few shallow Transformer blocks that are computationally efficient yet substantially beneficial; (2) modeling in the latent space of pretrained autoencoders, which proves more effective than direct pixel-level modeling; and (3) a novel guidance algorithm that significantly boosts sample quality. Crucially, our model remains an end-to-end normalizing flow, enabling exact maximum likelihood training in continuous spaces without discretization. STARFlow achieves competitive performance in both class-conditional and text-conditional image generation tasks, approaching state-of-the-art diffusion models in sample quality. To our knowledge, this work is the first successful demonstration of normalizing flows operating effectively at this scale and resolution.
Abstract:We study the well-motivated problem of online distribution shift in which the data arrive in batches and the distribution of each batch can change arbitrarily over time. Since the shifts can be large or small, abrupt or gradual, the length of the relevant historical data to learn from may vary over time, which poses a major challenge in designing algorithms that can automatically adapt to the best ``attention span'' while remaining computationally efficient. We propose a meta-algorithm that takes any network architecture and any Online Learner (OL) algorithm as input and produces a new algorithm which provably enhances the performance of the given OL under non-stationarity. Our algorithm is efficient (it requires maintaining only $O(\log(T))$ OL instances) and adaptive (it automatically chooses OL instances with the ideal ``attention'' length at every timestamp). Experiments on various real-world datasets across text and image modalities show that our method consistently improves the accuracy of user specified OL algorithms for classification tasks. Key novel algorithmic ingredients include a \emph{multi-resolution instance} design inspired by wavelet theory and a cross-validation-through-time technique. Both could be of independent interest.
Abstract:Covariates provide valuable information on external factors that influence time series and are critical in many real-world time series forecasting tasks. For example, in retail, covariates may indicate promotions or peak dates such as holiday seasons that heavily influence demand forecasts. Recent advances in pretraining large language model architectures for time series forecasting have led to highly accurate forecasters. However, the majority of these models do not readily use covariates as they are often specific to a certain task or domain. This paper introduces a new method to incorporate covariates into pretrained time series forecasting models. Our proposed approach incorporates covariate information into pretrained forecasting models through modular blocks that inject past and future covariate information, without necessarily modifying the pretrained model in consideration. In order to evaluate our approach, we introduce a benchmark composed of 32 different synthetic datasets with varying dynamics to evaluate the effectivity of forecasting models with covariates. Extensive evaluations on both synthetic and real datasets show that our approach effectively incorporates covariate information into pretrained models, outperforming existing baselines.
Abstract:Recent advances in large language models (LLMs) have significantly improved multi-hop question answering (QA) through direct Chain-of-Thought (CoT) reasoning. However, the irreversible nature of CoT leads to error accumulation, making it challenging to correct mistakes in multi-hop reasoning. This paper introduces ReAgent: a Reversible multi-Agent collaborative framework augmented with explicit backtracking mechanisms, enabling reversible multi-hop reasoning. By incorporating text-based retrieval, information aggregation and validation, our system can detect and correct errors mid-reasoning, leading to more robust and interpretable QA outcomes. The framework and experiments serve as a foundation for future work on error-tolerant QA systems. Empirical evaluations across three benchmarks indicate ReAgent's efficacy, yielding average about 6\% improvements against baseline models.
Abstract:With the rise of large language models (LLMs), AI agents as autonomous decision-makers present significant opportunities and challenges for human-AI cooperation. While many studies have explored human cooperation with AI as tools, the role of LLM-augmented autonomous agents in competitive-cooperative interactions remains under-examined. This study investigates human cooperative behavior by engaging 30 participants who interacted with LLM agents exhibiting different characteristics (purported human, purported rule-based AI agent, and LLM agent) in repeated Prisoner's Dilemma games. Findings show significant differences in cooperative behavior based on the agents' purported characteristics and the interaction effect of participants' genders and purported characteristics. We also analyzed human response patterns, including game completion time, proactive favorable behavior, and acceptance of repair efforts. These insights offer a new perspective on human interactions with LLM agents in competitive cooperation contexts, such as virtual avatars or future physical entities. The study underscores the importance of understanding human biases toward AI agents and how observed behaviors can influence future human-AI cooperation dynamics.
Abstract:Having an LLM that aligns with human preferences is essential for accommodating individual needs, such as maintaining writing style or generating specific topics of interest. The majority of current alignment methods rely on fine-tuning or prompting, which can be either costly or difficult to control. Model steering algorithms, which modify the model output by constructing specific steering directions, are typically easy to implement and optimization-free. However, their capabilities are typically limited to steering the model into one of the two directions (i.e., bidirectional steering), and there has been no theoretical understanding to guarantee their performance. In this work, we propose a theoretical framework to understand and quantify the model steering methods. Inspired by the framework, we propose a confident direction steering method (CONFST) that steers LLMs via modifying their activations at inference time. More specifically, CONFST builds a confident direction that is closely aligned with users' preferences, and this direction is then added to the activations of the LLMs to effectively steer the model output. Our approach offers three key advantages over popular bidirectional model steering methods: 1) It is more powerful, since multiple (i.e. more than two) users' preferences can be aligned simultaneously; 2) It is simple to implement, since there is no need to determine which layer to add the steering vector to; 3) No explicit user instruction is required. We validate our method on GPT-2 XL (1.5B), Mistral (7B) and Gemma-it (9B) models for tasks that require shifting the output of LLMs across various topics and styles, achieving superior performance over competing methods.
Abstract:Cybersickness remains a significant barrier to the widespread adoption of immersive virtual reality (VR) experiences, as it can greatly disrupt user engagement and comfort. Research has shown that cybersickness can significantly be reflected in head and eye tracking data, along with other physiological data (e.g., TMP, EDA, and BMP). Despite the application of deep learning techniques such as CNNs and LSTMs, these models often struggle to capture the complex interactions between multiple data modalities and lack the capacity for real-time inference, limiting their practical application. Addressing this gap, we propose a lightweight model that leverages a transformer-based encoder with sparse self-attention to process bio-signal features and a PP-TSN network for video feature extraction. These features are then integrated via a cross-modal fusion module, creating a video-aware bio-signal representation that supports cybersickness prediction based on both visual and bio-signal inputs. Our model, trained with a lightweight framework, was validated on a public dataset containing eye and head tracking data, physiological data, and VR video, and demonstrated state-of-the-art performance in cybersickness prediction, achieving a high accuracy of 93.13\% using only VR video inputs. These findings suggest that our approach not only enables effective, real-time cybersickness prediction but also addresses the longstanding issue of modality interaction in VR environments. This advancement provides a foundation for future research on multimodal data integration in VR, potentially leading to more personalized, comfortable and widely accessible VR experiences.
Abstract:We introduce Shape Tokens, a 3D representation that is continuous, compact, and easy to incorporate into machine learning models. Shape Tokens act as conditioning vectors that represent shape information in a 3D flow-matching model. The flow-matching model is trained to approximate probability density functions corresponding to delta functions concentrated on the surfaces of shapes in 3D. By attaching Shape Tokens to various machine learning models, we can generate new shapes, convert images to 3D, align 3D shapes with text and images, and render shapes directly at variable, user specified, resolution. Moreover, Shape Tokens enable a systematic analysis of geometric properties such as normal, density, and deformation field. Across all tasks and experiments, utilizing Shape Tokens demonstrate strong performance compared to existing baselines.
Abstract:Distilling 3D representations from pretrained 2D diffusion models is essential for 3D creative applications across gaming, film, and interior design. Current SDS-based methods are hindered by inefficient information distillation from diffusion models, which prevents the creation of photorealistic 3D contents. Our research reevaluates the SDS approach by analyzing its fundamental nature as a basic image editing process that commonly results in over-saturation, over-smoothing and lack of rich content due to the poor-quality single-step denoising. To address these limitations, we propose GE3D (3D Generation by Editing). Each iteration of GE3D utilizes a 2D editing framework that combines a noising trajectory to preserve the information of the input image, alongside a text-guided denoising trajectory. We optimize the process by aligning the latents across both trajectories. This approach fully exploits pretrained diffusion models to distill multi-granularity information through multiple denoising steps, resulting in photorealistic 3D outputs. Both theoretical and experimental results confirm the effectiveness of our approach, which not only advances 3D generation technology but also establishes a novel connection between 3D generation and 2D editing. This could potentially inspire further research in the field. Code and demos are released at https://jahnsonblack.github.io/GE3D/.