Abstract:Knowledge graphs (KGs) are crucial in the field of artificial intelligence and are widely applied in downstream tasks, such as enhancing Question Answering (QA) systems. The construction of KGs typically requires significant effort from domain experts. Recently, Large Language Models (LLMs) have been used for knowledge graph construction (KGC), however, most existing approaches focus on a local perspective, extracting knowledge triplets from individual sentences or documents. In this work, we introduce Graphusion, a zero-shot KGC framework from free text. The core fusion module provides a global view of triplets, incorporating entity merging, conflict resolution, and novel triplet discovery. We showcase how Graphusion could be applied to the natural language processing (NLP) domain and validate it in the educational scenario. Specifically, we introduce TutorQA, a new expert-verified benchmark for graph reasoning and QA, comprising six tasks and a total of 1,200 QA pairs. Our evaluation demonstrates that Graphusion surpasses supervised baselines by up to 10% in accuracy on link prediction. Additionally, it achieves average scores of 2.92 and 2.37 out of 3 in human evaluations for concept entity extraction and relation recognition, respectively.
Abstract:Recently, many studies have demonstrated that exclusively incorporating OCR-derived text and spatial layouts with large language models (LLMs) can be highly effective for document understanding tasks. However, existing methods that integrate spatial layouts with text have limitations, such as producing overly long text sequences or failing to fully leverage the autoregressive traits of LLMs. In this work, we introduce Interleaving Layout and Text in a Large Language Model (LayTextLLM)} for document understanding. In particular, LayTextLLM projects each bounding box to a single embedding and interleaves it with text, efficiently avoiding long sequence issues while leveraging autoregressive traits of LLMs. LayTextLLM not only streamlines the interaction of layout and textual data but also shows enhanced performance in Key Information Extraction (KIE) and Visual Question Answering (VQA). Comprehensive benchmark evaluations reveal significant improvements, with a 27.0% increase on KIE tasks and 24.1% on VQA tasks compared to previous state-of-the-art document understanding MLLMs, as well as a 15.5% improvement over other SOTA OCR-based LLMs on KIE tasks.
Abstract:Despite the notable advancements achieved by leveraging pre-trained vision-language (VL) models through few-shot tuning for downstream tasks, our detailed empirical study highlights a significant dependence of few-shot learning outcomes on the careful selection of training examples - a facet that has been previously overlooked in research. In this study, we delve into devising more effective strategies for the meticulous selection of few-shot training examples, as opposed to relying on random sampling, to enhance the potential of existing few-shot prompt learning methodologies. To achieve this, we assess the effectiveness of various Active Learning (AL) techniques for instance selection, such as Entropy and Margin of Confidence, within the context of few-shot training. Furthermore, we introduce two innovative selection methods - Representativeness (REPRE) and Gaussian Monte Carlo (Montecarlo) - designed to proactively pinpoint informative examples for labeling in relation to pre-trained VL models. Our findings demonstrate that both REPRE and Montecarlo significantly surpass both random selection and AL-based strategies in few-shot training scenarios. The research also underscores that these instance selection methods are model-agnostic, offering a versatile enhancement to a wide array of few-shot training methodologies.
Abstract:Text-Centric Visual Question Answering (TEC-VQA) in its proper format not only facilitates human-machine interaction in text-centric visual environments but also serves as a de facto gold proxy to evaluate AI models in the domain of text-centric scene understanding. However, most TEC-VQA benchmarks have focused on high-resource languages like English and Chinese. Despite pioneering works to expand multilingual QA pairs in non-text-centric VQA datasets using translation engines, the translation-based protocol encounters a substantial ``Visual-textual misalignment'' problem when applied to TEC-VQA. Specifically, it prioritizes the text in question-answer pairs while disregarding the visual text present in images. Furthermore, it does not adequately tackle challenges related to nuanced meaning, contextual distortion, language bias, and question-type diversity. In this work, we address the task of multilingual TEC-VQA and provide a benchmark with high-quality human expert annotations in 9 diverse languages, called MTVQA. To our knowledge, MTVQA is the first multilingual TEC-VQA benchmark to provide human expert annotations for text-centric scenarios. Further, by evaluating several state-of-the-art Multimodal Large Language Models (MLLMs), including GPT-4V, on our MTVQA dataset, it is evident that there is still room for performance improvement, underscoring the value of our dataset. We hope this dataset will provide researchers with fresh perspectives and inspiration within the community. The MTVQA dataset will be available at https://huggingface.co/datasets/ByteDance/MTVQA.
Abstract:In the domain of Natural Language Processing (NLP), Large Language Models (LLMs) have demonstrated promise in text-generation tasks. However, their educational applications, particularly for domain-specific queries, remain underexplored. This study investigates LLMs' capabilities in educational scenarios, focusing on concept graph recovery and question-answering (QA). We assess LLMs' zero-shot performance in creating domain-specific concept graphs and introduce TutorQA, a new expert-verified NLP-focused benchmark for scientific graph reasoning and QA. TutorQA consists of five tasks with 500 QA pairs. To tackle TutorQA queries, we present CGLLM, a pipeline integrating concept graphs with LLMs for answering diverse questions. Our results indicate that LLMs' zero-shot concept graph recovery is competitive with supervised methods, showing an average 3% F1 score improvement. In TutorQA tasks, LLMs achieve up to 26% F1 score enhancement. Moreover, human evaluation and analysis show that CGLLM generates answers with more fine-grained concepts.
Abstract:In this study, we aim to reduce generation latency for Named Entity Recognition (NER) with Large Language Models (LLMs). The main cause of high latency in LLMs is the sequential decoding process, which autoregressively generates all labels and mentions for NER, significantly increase the sequence length. To this end, we introduce Parallel Decoding in LLM for NE} (PaDeLLM-NER), a approach that integrates seamlessly into existing generative model frameworks without necessitating additional modules or architectural modifications. PaDeLLM-NER allows for the simultaneous decoding of all mentions, thereby reducing generation latency. Experiments reveal that PaDeLLM-NER significantly increases inference speed that is 1.76 to 10.22 times faster than the autoregressive approach for both English and Chinese. Simultaneously it maintains the quality of predictions as evidenced by the performance that is on par with the state-of-the-art across various datasets.
Abstract:This paper presents VisLingInstruct, a novel approach to advancing Multi-Modal Language Models (MMLMs) in zero-shot learning. Current MMLMs show impressive zero-shot abilities in multi-modal tasks, but their performance depends heavily on the quality of instructions. VisLingInstruct tackles this by autonomously evaluating and optimizing instructional texts through In-Context Learning, improving the synergy between visual perception and linguistic expression in MMLMs. Alongside this instructional advancement, we have also optimized the visual feature extraction modules in MMLMs, further augmenting their responsiveness to textual cues. Our comprehensive experiments on MMLMs, based on FlanT5 and Vicuna, show that VisLingInstruct significantly improves zero-shot performance in visual multi-modal tasks. Notably, it achieves a 13.1% and 9% increase in accuracy over the prior state-of-the-art on the TextVQA and HatefulMemes datasets.
Abstract:Text-rich VQA, namely Visual Question Answering based on text recognition in the images, is a cross-modal task that requires both image comprehension and text recognition. In this work, we focus on investigating the advantages and bottlenecks of LLM-based approaches in addressing this problem. To address the above concern, we separate the vision and language modules, where we leverage external OCR models to recognize texts in the image and Large Language Models (LLMs) to answer the question given texts. The whole framework is training-free benefiting from the in-context ability of LLMs. This pipeline achieved superior performance compared to the majority of existing Multimodal Large Language Models (MLLM) on four text-rich VQA datasets. Besides, based on the ablation study, we find that LLM brings stronger comprehension ability and may introduce helpful knowledge for the VQA problem. The bottleneck for LLM to address text-rich VQA problems may primarily lie in visual part. We also combine the OCR module with MLLMs and pleasantly find that the combination of OCR module with MLLM also works. It's worth noting that not all MLLMs can comprehend the OCR information, which provides insights into how to train an MLLM that preserves the abilities of LLM.
Abstract:Large Language Models (LLMs) have achieved significant success across various natural language processing (NLP) tasks, encompassing question-answering, summarization, and machine translation, among others. While LLMs excel in general tasks, their efficacy in domain-specific applications remains under exploration. Additionally, LLM-generated text sometimes exhibits issues like hallucination and disinformation. In this study, we assess LLMs' capability of producing concise survey articles within the computer science-NLP domain, focusing on 20 chosen topics. Automated evaluations indicate that GPT-4 outperforms GPT-3.5 when benchmarked against the ground truth. Furthermore, four human evaluators provide insights from six perspectives across four model configurations. Through case studies, we demonstrate that while GPT often yields commendable results, there are instances of shortcomings, such as incomplete information and the exhibition of lapses in factual accuracy.
Abstract:In the era of Large Language Models (LLMs), tremendous strides have been made in the field of multimodal understanding. However, existing advanced algorithms are limited to effectively utilizing the immense representation capabilities and rich world knowledge inherent to these large pre-trained models, and the beneficial connections among tasks within the context of text-rich scenarios have not been sufficiently explored. In this work, we introduce UniDoc, a novel multimodal model equipped with text detection and recognition capabilities, which are deficient in existing approaches. Moreover, UniDoc capitalizes on the beneficial interactions among tasks to enhance the performance of each individual task. To implement UniDoc, we perform unified multimodal instruct tuning on the contributed large-scale instruction following datasets. Quantitative and qualitative experimental results show that UniDoc sets state-of-the-art scores across multiple challenging benchmarks. To the best of our knowledge, this is the first large multimodal model capable of simultaneous text detection, recognition, spotting, and understanding.