Abstract:3D Gaussian Splatting (3DGS) has been recognized as a pioneering technique in scene reconstruction and novel view synthesis. Recent work on reconstructing the 3D human body using 3DGS attempts to leverage prior information on human pose to enhance rendering quality and improve training speed. However, it struggles to effectively fit dynamic surface planes due to multi-view inconsistency and redundant Gaussians. This inconsistency arises because Gaussian ellipsoids cannot accurately represent the surfaces of dynamic objects, which hinders the rapid reconstruction of the dynamic human body. Meanwhile, the prevalence of redundant Gaussians means that the training time of these works is still not ideal for quickly fitting a dynamic human body. To address these, we propose EfficientHuman, a model that quickly accomplishes the dynamic reconstruction of the human body using Articulated 2D Gaussian while ensuring high rendering quality. The key innovation involves encoding Gaussian splats as Articulated 2D Gaussian surfels in canonical space and then transforming them to pose space via Linear Blend Skinning (LBS) to achieve efficient pose transformations. Unlike 3D Gaussians, Articulated 2D Gaussian surfels can quickly conform to the dynamic human body while ensuring view-consistent geometries. Additionally, we introduce a pose calibration module and an LBS optimization module to achieve precise fitting of dynamic human poses, enhancing the model's performance. Extensive experiments on the ZJU-MoCap dataset demonstrate that EfficientHuman achieves rapid 3D dynamic human reconstruction in less than a minute on average, which is 20 seconds faster than the current state-of-the-art method, while also reducing the number of redundant Gaussians.
Abstract:Many learning-based low-light image enhancement (LLIE) algorithms are based on the Retinex theory. However, the Retinex-based decomposition techniques in such models introduce corruptions which limit their enhancement performance. In this paper, we propose a Latent Disentangle-based Enhancement Network (LDE-Net) for low light vision tasks. The latent disentanglement module disentangles the input image in latent space such that no corruption remains in the disentangled Content and Illumination components. For LLIE task, we design a Content-Aware Embedding (CAE) module that utilizes Content features to direct the enhancement of the Illumination component. For downstream tasks (e.g. nighttime UAV tracking and low-light object detection), we develop an effective light-weight enhancer based on the latent disentanglement framework. Comprehensive quantitative and qualitative experiments demonstrate that our LDE-Net significantly outperforms state-of-the-art methods on various LLIE benchmarks. In addition, the great results obtained by applying our framework on the downstream tasks also demonstrate the usefulness of our latent disentanglement design.