Jake
Abstract:Quantization plays an important role in the physical layer (PHY) disaggregation which is fundamental to the Open Radio Access Network (O-RAN) architecture, since digitized signals must be transmitted over fronthaul connections. In this paper we explore the effect of quantization on PHY performance, drawing on the Bussgang decomposition and the implications of the Bussgang theorem and extending it to the case of non-Gaussian signals. We first prove several theorems regarding the signal to distortion plus noise ratio for a general non-linearity, applicable to both the Gaussian and the non-Gaussian case, showing that the decomposition can be applied to the non-Gaussian case, but that formulae previously introduced should be amended. We then apply these results to the non-linearity created by quantization, both for Gaussian and non-Gaussian signal distributions, and give numerical results derived from both theory and simulation.
Abstract:LLM-based agents have emerged as promising tools, which are crafted to fulfill complex tasks by iterative planning and action. However, these agents are susceptible to undesired planning hallucinations when lacking specific knowledge for expertise-intensive tasks. To address this, preliminary attempts are made to enhance planning reliability by incorporating external workflow-related knowledge. Despite the promise, such infused knowledge is mostly disorganized and diverse in formats, lacking rigorous formalization and comprehensive comparisons. Motivated by this, we formalize different formats of workflow knowledge and present FlowBench, the first benchmark for workflow-guided planning. FlowBench covers 51 different scenarios from 6 domains, with knowledge presented in diverse formats. To assess different LLMs on FlowBench, we design a multi-tiered evaluation framework. We evaluate the efficacy of workflow knowledge across multiple formats, and the results indicate that current LLM agents need considerable improvements for satisfactory planning. We hope that our challenging benchmark can pave the way for future agent planning research.
Abstract:Within the evolving landscape of deep learning, the dilemma of data quantity and quality has been a long-standing problem. The recent advent of Large Language Models (LLMs) offers a data-centric solution to alleviate the limitations of real-world data with synthetic data generation. However, current investigations into this field lack a unified framework and mostly stay on the surface. Therefore, this paper provides an organization of relevant studies based on a generic workflow of synthetic data generation. By doing so, we highlight the gaps within existing research and outline prospective avenues for future study. This work aims to shepherd the academic and industrial communities towards deeper, more methodical inquiries into the capabilities and applications of LLMs-driven synthetic data generation.
Abstract:Prompt recovery in large language models (LLMs) is crucial for understanding how LLMs work and addressing concerns regarding privacy, copyright, etc. The trend towards inference-only APIs complicates this task by restricting access to essential outputs for recovery. To tackle this challenge, we extract prompt-related information from limited outputs and identify a strong(negative) correlation between output probability-based uncertainty and the success of prompt recovery. This finding led to the development of Deliberative PrOmpt RecoverY (DORY), our novel approach that leverages uncertainty to recover prompts accurately. DORY involves reconstructing drafts from outputs, refining these with hints, and filtering out noise based on uncertainty. Our evaluation across diverse LLMs and prompt benchmarks shows that DORY outperforms existing baselines, improving performance by approximately 10.82% and establishing a new state-of-the-art record in prompt recovery tasks. Significantly, DORY operates using a single LLM without any external resources or model, offering a cost-effective, user-friendly prompt recovery solution.
Abstract:The rapid advancements of Large Language Models (LLMs) tightly associate with the expansion of the training data size. However, the unchecked ultra-large-scale training sets introduce a series of potential risks like data contamination, i.e. the benchmark data is used for training. In this work, we propose a holistic method named Polarized Augment Calibration (PAC) along with a new to-be-released dataset to detect the contaminated data and diminish the contamination effect. PAC extends the popular MIA (Membership Inference Attack) -- from machine learning community -- by forming a more global target at detecting training data to Clarify invisible training data. As a pioneering work, PAC is very much plug-and-play that can be integrated with most (if not all) current white- and black-box LLMs. By extensive experiments, PAC outperforms existing methods by at least 4.5%, towards data contamination detection on more 4 dataset formats, with more than 10 base LLMs. Besides, our application in real-world scenarios highlights the prominent presence of contamination and related issues.
Abstract:The fast advance of the image generation community has attracted attention worldwide. The safety issue needs to be further scrutinized and studied. There have been a few works around this area mostly achieving a post-processing design, model-specific, or yielding suboptimal image quality generation. Despite that, in this article, we discover a black-box attack method that enjoys three merits. It enables (i)-attacks both directed and semantic-driven that theoretically and practically pose a hazard to this vast user community, (ii)-surprisingly surpasses the white-box attack in a black-box manner and (iii)-without requiring any post-processing effort. Core to our approach is inspired by the concept guidance intriguing property of Classifier-Free guidance (CFG) in T2I models, and we discover that conducting frustratingly simple guidance in the CLIP embedding space, coupled with the semantic loss and an additionally sensitive word list works very well. Moreover, our results expose and highlight the vulnerabilities in existing defense mechanisms.
Abstract:As a fundamental problem in transfer learning, model selection aims to rank off-the-shelf pre-trained models and select the most suitable one for the new target task. Existing model selection techniques are often constrained in their scope and tend to overlook the nuanced relationships between models and tasks. In this paper, we present a pragmatic framework \textbf{Fennec}, delving into a diverse, large-scale model repository while meticulously considering the intricate connections between tasks and models. The key insight is to map all models and historical tasks into a transfer-related subspace, where the distance between model vectors and task vectors represents the magnitude of transferability. A large vision model, as a proxy, infers a new task's representation in the transfer space, thereby circumventing the computational burden of extensive forward passes. We also investigate the impact of the inherent inductive bias of models on transfer results and propose a novel method called \textbf{archi2vec} to encode the intricate structures of models. The transfer score is computed through straightforward vector arithmetic with a time complexity of $\mathcal{O}(1)$. Finally, we make a substantial contribution to the field by releasing a comprehensive benchmark. We validate the effectiveness of our framework through rigorous testing on two benchmarks. The benchmark and the code will be publicly available in the near future.
Abstract:In the current landscape of large language models (LLMs), the process of instruction tuning serves as an essential step. Considering the high computing power overhead, data-efficient instruction tuning was proposed to reduce the training data size in this process, aiming at selecting high-quality instructional data. Nevertheless, we argue that most current data-efficient instruction-tuning methods are highly dependent on the quality of the original instruction-tuning dataset. When it comes to datasets synthesized by LLMs, a common scenario in this field, dirty samples will even be selected with a higher probability than other samples. To address these challenges, we utilized external knowledge (relevant examples or paragraphs) to evaluate those samples synthesized by LLMs with an in-context-based relative predictive entropy. Based on the new metric, we proposed a framework, dubbed as \textbf{RECOST}, which integrates external-knowledge-base re-ranking and diversity-consistent sampling into a single pipeline. Through extensive experiments on several synthetic datasets (Alpaca and Alpaca-gpt4), we demonstrate the effectiveness of our method and achieve even better results with only \textbf{1\%} of the full dataset.
Abstract:In the rapidly evolving domain of electrical power systems, the Volt-VAR optimization (VVO) is increasingly critical, especially with the burgeoning integration of renewable energy sources. Traditional approaches to learning-based VVO in expansive and dynamically changing power systems are often hindered by computational complexities. To address this challenge, our research presents a novel framework that harnesses the potential of Deep Reinforcement Learning (DRL), specifically utilizing the Importance Weighted Actor-Learner Architecture (IMPALA) algorithm, executed on the RAY platform. This framework, built upon RLlib-an industry-standard in Reinforcement Learning-ingeniously capitalizes on the distributed computing capabilities and advanced hyperparameter tuning offered by RAY. This design significantly expedites the exploration and exploitation phases in the VVO solution space. Our empirical results demonstrate that our approach not only surpasses existing DRL methods in achieving superior reward outcomes but also manifests a remarkable tenfold reduction in computational requirements. The integration of our DRL agent with the RAY platform facilitates the creation of RLlib-IMPALA, a novel framework that efficiently uses RAY's resources to improve system adaptability and control. RLlib-IMPALA leverages RAY's toolkit to enhance analytical capabilities and significantly speeds up training to become more than 10 times faster than other state-of-the-art DRL methods.
Abstract:The conventional evaluation protocols on machine learning models rely heavily on a labeled, i.i.d-assumed testing dataset, which is not often present in real world applications. The Automated Model Evaluation (AutoEval) shows an alternative to this traditional workflow, by forming a proximal prediction pipeline of the testing performance without the presence of ground-truth labels. Despite its recent successes, the AutoEval frameworks still suffer from an overconfidence issue, substantial storage and computational cost. In that regard, we propose a novel measure -- Meta-Distribution Energy (MDE) -- that allows the AutoEval framework to be both more efficient and effective. The core of the MDE is to establish a meta-distribution statistic, on the information (energy) associated with individual samples, then offer a smoother representation enabled by energy-based learning. We further provide our theoretical insights by connecting the MDE with the classification loss. We provide extensive experiments across modalities, datasets and different architectural backbones to validate MDE's validity, together with its superiority compared with prior approaches. We also prove MDE's versatility by showing its seamless integration with large-scale models, and easy adaption to learning scenarios with noisy- or imbalanced- labels. Code and data are available: https://github.com/pengr/Energy_AutoEval