Alert button
Picture for Qian Chen

Qian Chen

Alert button

CodeScope: An Execution-based Multilingual Multitask Multidimensional Benchmark for Evaluating LLMs on Code Understanding and Generation

Nov 14, 2023
Weixiang Yan, Haitian Liu, Yunkun Wang, Yunzhe Li, Qian Chen, Wen Wang, Tingyu Lin, Weishan Zhao, Li Zhu, Shuiguang Deng, Hari Sundaram

Large Language Models (LLMs) have demonstrated remarkable performance on coding related tasks, particularly on assisting humans in programming and facilitating programming automation. However, existing benchmarks for evaluating the code understanding and generation capacities of LLMs suffer from severe limitations. First, most benchmarks are deficient as they focus on a narrow range of popular programming languages and specific tasks, whereas the real-world software development scenarios show dire need to implement systems with multilingual programming environments to satisfy diverse requirements. Practical programming practices also strongly expect multi-task settings for testing coding capabilities of LLMs comprehensively and robustly. Second, most benchmarks also fail to consider the actual executability and the consistency of execution results of the generated code. To bridge these gaps between existing benchmarks and expectations from practical applications, we introduce CodeScope, an execution-based, multilingual, multi-task, multi-dimensional evaluation benchmark for comprehensively gauging LLM capabilities on coding tasks. CodeScope covers 43 programming languages and 8 coding tasks. It evaluates the coding performance of LLMs from three dimensions (perspectives): difficulty, efficiency, and length. To facilitate execution-based evaluations of code generation, we develop MultiCodeEngine, an automated code execution engine that supports 14 programming languages. Finally, we systematically evaluate and analyze 8 mainstream LLMs on CodeScope tasks and demonstrate the superior breadth and challenges of CodeScope for evaluating LLMs on code understanding and generation tasks compared to other benchmarks. The CodeScope benchmark and datasets are publicly available at

Viaarxiv icon

Imaging through multimode fibres with physical prior

Nov 14, 2023
Chuncheng Zhang, Yingjie Shi, Zheyi Yao, Xiubao Sui, Qian Chen

Imaging through perturbed multimode fibres based on deep learning has been widely researched. However, existing methods mainly use target-speckle pairs in different configurations. It is challenging to reconstruct targets without trained networks. In this paper, we propose a physics-assisted, unsupervised, learning-based fibre imaging scheme. The role of the physical prior is to simplify the mapping relationship between the speckle pattern and the target image, thereby reducing the computational complexity. The unsupervised network learns target features according to the optimized direction provided by the physical prior. Therefore, the reconstruction process of the online learning only requires a few speckle patterns and unpaired targets. The proposed scheme also increases the generalization ability of the learning-based method in perturbed multimode fibres. Our scheme has the potential to extend the application of multimode fibre imaging.

Viaarxiv icon

Loss Masking Is Not Needed in Decoder-only Transformer for Discrete-token Based ASR

Nov 08, 2023
Qian Chen, Wen Wang, Qinglin Zhang, Siqi Zheng, Shiliang Zhang, Chong Deng, Yukun Ma, Hai Yu, Jiaqing Liu, Chong Zhang

Recently, unified speech-text models, such as SpeechGPT, VioLA, and AudioPaLM, have achieved remarkable performance on speech tasks. These models convert continuous speech signals into discrete tokens (speech discretization) and merge text and speech tokens into a shared vocabulary. Then they train a single decoder-only Transformer on a mixture of speech tasks. Specifically, all these models utilize Loss Masking on the input speech tokens for the ASR task, which means that these models do not explicitly model the dependency between the speech tokens. In this paper, we attempt to model the sequence of speech tokens in an autoregressive manner like text. However, we find that applying the conventional cross-entropy loss on input speech tokens does not consistently improve the ASR performance over Loss Masking. Therefore, we propose a novel approach denoted Smoothed Label Distillation (SLD), which introduces a KL divergence loss with smoothed labels on the input speech tokens to effectively model speech tokens. Experiments demonstrate that our SLD approach alleviates the limitations of the cross-entropy loss and consistently outperforms Loss Masking for decoder-only Transformer based ASR using different speech discretization methods.

* 5 pages, submitted to ICASSP 2024 
Viaarxiv icon

Differentially Private Pre-Trained Model Fusion using Decentralized Federated Graph Matching

Nov 05, 2023
Qian Chen, Yiqiang Chen, Xinlong Jiang, Teng Zhang, Weiwei Dai, Wuliang Huang, Zhen Yan, Bo Ye

Model fusion is becoming a crucial component in the context of model-as-a-service scenarios, enabling the delivery of high-quality model services to local users. However, this approach introduces privacy risks and imposes certain limitations on its applications. Ensuring secure model exchange and knowledge fusion among users becomes a significant challenge in this setting. To tackle this issue, we propose PrivFusion, a novel architecture that preserves privacy while facilitating model fusion under the constraints of local differential privacy. PrivFusion leverages a graph-based structure, enabling the fusion of models from multiple parties without necessitating retraining. By employing randomized mechanisms, PrivFusion ensures privacy guarantees throughout the fusion process. To enhance model privacy, our approach incorporates a hybrid local differentially private mechanism and decentralized federated graph matching, effectively protecting both activation values and weights. Additionally, we introduce a perturbation filter adapter to alleviate the impact of randomized noise, thereby preserving the utility of the fused model. Through extensive experiments conducted on diverse image datasets and real-world healthcare applications, we provide empirical evidence showcasing the effectiveness of PrivFusion in maintaining model performance while preserving privacy. Our contributions offer valuable insights and practical solutions for secure and collaborative data analysis within the domain of privacy-preserving model fusion.

Viaarxiv icon

Improving Long Document Topic Segmentation Models With Enhanced Coherence Modeling

Oct 23, 2023
Hai Yu, Chong Deng, Qinglin Zhang, Jiaqing Liu, Qian Chen, Wen Wang

Figure 1 for Improving Long Document Topic Segmentation Models With Enhanced Coherence Modeling
Figure 2 for Improving Long Document Topic Segmentation Models With Enhanced Coherence Modeling
Figure 3 for Improving Long Document Topic Segmentation Models With Enhanced Coherence Modeling
Figure 4 for Improving Long Document Topic Segmentation Models With Enhanced Coherence Modeling

Topic segmentation is critical for obtaining structured documents and improving downstream tasks such as information retrieval. Due to its ability of automatically exploring clues of topic shift from abundant labeled data, recent supervised neural models have greatly promoted the development of long document topic segmentation, but leaving the deeper relationship between coherence and topic segmentation underexplored. Therefore, this paper enhances the ability of supervised models to capture coherence from both logical structure and semantic similarity perspectives to further improve the topic segmentation performance, proposing Topic-aware Sentence Structure Prediction (TSSP) and Contrastive Semantic Similarity Learning (CSSL). Specifically, the TSSP task is proposed to force the model to comprehend structural information by learning the original relations between adjacent sentences in a disarrayed document, which is constructed by jointly disrupting the original document at topic and sentence levels. Moreover, we utilize inter- and intra-topic information to construct contrastive samples and design the CSSL objective to ensure that the sentences representations in the same topic have higher similarity, while those in different topics are less similar. Extensive experiments show that the Longformer with our approach significantly outperforms old state-of-the-art (SOTA) methods. Our approach improve $F_1$ of old SOTA by 3.42 (73.74 -> 77.16) and reduces $P_k$ by 1.11 points (15.0 -> 13.89) on WIKI-727K and achieves an average relative reduction of 4.3% on $P_k$ on WikiSection. The average relative $P_k$ drop of 8.38% on two out-of-domain datasets also demonstrates the robustness of our approach.

* Accepted by EMNLP 2023. Codes is available at 
Viaarxiv icon

MeKB-Rec: Personal Knowledge Graph Learning for Cross-Domain Recommendation

Oct 17, 2023
Xin Su, Yao Zhou, Zifei Shan, Qian Chen

It is a long-standing challenge in modern recommender systems to effectively make recommendations for new users, namely the cold-start problem. Cross-Domain Recommendation (CDR) has been proposed to address this challenge, but current ways to represent users' interests across systems are still severely limited. We introduce Personal Knowledge Graph (PKG) as a domain-invariant interest representation, and propose a novel CDR paradigm named MeKB-Rec. We first link users and entities in a knowledge base to construct a PKG of users' interests, named MeKB. Then we learn a semantic representation of MeKB for the cross-domain recommendation. To efficiently utilize limited training data in CDR, MeKB-Rec employs Pretrained Language Models to inject world knowledge into understanding users' interests. Beyond most existing systems, our approach builds a semantic mapping across domains which breaks the requirement for in-domain user behaviors, enabling zero-shot recommendations for new users in a low-resource domain. We experiment MeKB-Rec on well-established public CDR datasets, and demonstrate that the new formulation % is more powerful than previous approaches, achieves a new state-of-the-art that significantly improves HR@10 and NDCG@10 metrics over best previous approaches by 24\%--91\%, with a 105\% improvement for HR@10 of zero-shot users with no behavior in the target domain. We deploy MeKB-Rec in WeiXin recommendation scenarios and achieve significant gains in core online metrics. MeKB-Rec is now serving hundreds of millions of users in real-world products.

* 13 pages, 4 figures, conference 
Viaarxiv icon

PAGE: Equilibrate Personalization and Generalization in Federated Learning

Oct 13, 2023
Qian Chen, Zilong Wang, Jiaqi Hu, Haonan Yan, Jianying Zhou, Xiaodong Lin

Federated learning (FL) is becoming a major driving force behind machine learning as a service, where customers (clients) collaboratively benefit from shared local updates under the orchestration of the service provider (server). Representing clients' current demands and the server's future demand, local model personalization and global model generalization are separately investigated, as the ill-effects of data heterogeneity enforce the community to focus on one over the other. However, these two seemingly competing goals are of equal importance rather than black and white issues, and should be achieved simultaneously. In this paper, we propose the first algorithm to balance personalization and generalization on top of game theory, dubbed PAGE, which reshapes FL as a co-opetition game between clients and the server. To explore the equilibrium, PAGE further formulates the game as Markov decision processes, and leverages the reinforcement learning algorithm, which simplifies the solving complexity. Extensive experiments on four widespread datasets show that PAGE outperforms state-of-the-art FL baselines in terms of global and local prediction accuracy simultaneously, and the accuracy can be improved by up to 35.20% and 39.91%, respectively. In addition, biased variants of PAGE imply promising adaptiveness to demand shifts in practice.

Viaarxiv icon

LauraGPT: Listen, Attend, Understand, and Regenerate Audio with GPT

Oct 11, 2023
Jiaming Wang, Zhihao Du, Qian Chen, Yunfei Chu, Zhifu Gao, Zerui Li, Kai Hu, Xiaohuan Zhou, Jin Xu, Ziyang Ma, Wen Wang, Siqi Zheng, Chang Zhou, Zhijie Yan, Shiliang Zhang

Figure 1 for LauraGPT: Listen, Attend, Understand, and Regenerate Audio with GPT
Figure 2 for LauraGPT: Listen, Attend, Understand, and Regenerate Audio with GPT
Figure 3 for LauraGPT: Listen, Attend, Understand, and Regenerate Audio with GPT
Figure 4 for LauraGPT: Listen, Attend, Understand, and Regenerate Audio with GPT

Generative Pre-trained Transformer (GPT) models have achieved remarkable performance on various natural language processing tasks. However, there has been limited research on applying similar frameworks to audio tasks. Previously proposed large language models for audio tasks either lack sufficient quantitative evaluations, or are limited to tasks for recognizing and understanding audio content, or significantly underperform existing state-of-the-art (SOTA) models. In this paper, we propose LauraGPT, a unified GPT model for audio recognition, understanding, and generation. LauraGPT is a versatile language model that can process both audio and text inputs and generate outputs in either modalities. It can perform a wide range of tasks related to content, semantics, paralinguistics, and audio-signal analysis. Some of its noteworthy tasks include automatic speech recognition, speech-to-text translation, text-to-speech synthesis, machine translation, speech enhancement, automated audio captioning, speech emotion recognition, and spoken language understanding. To achieve this goal, we use a combination of continuous and discrete features for audio. We encode input audio into continuous representations using an audio encoder and decode output audio from discrete codec codes. We then fine-tune a large decoder-only Transformer-based language model on multiple audio-to-text, text-to-audio, audio-to-audio, and text-to-text tasks using a supervised multitask learning approach. Extensive experiments show that LauraGPT achieves competitive or superior performance compared to existing SOTA models on various audio processing benchmarks.

* 10 pages, under review 
Viaarxiv icon

ITRE: Low-light Image Enhancement Based on Illumination Transmission Ratio Estimation

Oct 08, 2023
Yu Wang, Yihong Wang, Tong Liu, Xiubao Sui, Qian Chen

Figure 1 for ITRE: Low-light Image Enhancement Based on Illumination Transmission Ratio Estimation
Figure 2 for ITRE: Low-light Image Enhancement Based on Illumination Transmission Ratio Estimation
Figure 3 for ITRE: Low-light Image Enhancement Based on Illumination Transmission Ratio Estimation
Figure 4 for ITRE: Low-light Image Enhancement Based on Illumination Transmission Ratio Estimation

Noise, artifacts, and over-exposure are significant challenges in the field of low-light image enhancement. Existing methods often struggle to address these issues simultaneously. In this paper, we propose a novel Retinex-based method, called ITRE, which suppresses noise and artifacts from the origin of the model, prevents over-exposure throughout the enhancement process. Specifically, we assume that there must exist a pixel which is least disturbed by low light within pixels of same color. First, clustering the pixels on the RGB color space to find the Illumination Transmission Ratio (ITR) matrix of the whole image, which determines that noise is not over-amplified easily. Next, we consider ITR of the image as the initial illumination transmission map to construct a base model for refined transmission map, which prevents artifacts. Additionally, we design an over-exposure module that captures the fundamental characteristics of pixel over-exposure and seamlessly integrate it into the base model. Finally, there is a possibility of weak enhancement when inter-class distance of pixels with same color is too small. To counteract this, we design a Robust-Guard module that safeguards the robustness of the image enhancement process. Extensive experiments demonstrate the effectiveness of our approach in suppressing noise, preventing artifacts, and controlling over-exposure level simultaneously. Our method performs superiority in qualitative and quantitative performance evaluations by comparing with state-of-the-art methods.

Viaarxiv icon