Abstract:Harnessing multi-level electron transitions, Rydberg Atomic Receivers (RAREs) can detect wireless signals across a wide range of frequency bands, from Megahertz to Terahertz, enabling multi-band communications and sensing (C&S). Current research on multi-band RAREs primarily focuses on experimental demonstrations, lacking an interpretable model to mathematically characterize their mechanisms. This issue leaves the multi-band RARE as a black box, posing challenges in its practical C&S applications. To fill in this gap, this paper investigates the underlying mechanism of multi-band RAREs and explores their optimal performance. For the first time, the closed-form expression of the transfer function of a multi-band RARE is derived by solving the quantum response of Rydberg atoms excited by multi-band signals. The function reveals that a multiband RARE simultaneously serves as both a multi-band atomic mixer for down-converting multi-band signals and a multi-band atomic amplifier that reflects its sensitivity to each band. Further analysis of the atomic amplifier unveils that the gain factor at each frequency band can be decoupled into a global gain term and a Rabi attention term. The former determines the overall sensitivity of a RARE to all frequency bands of wireless signals. The latter influences the allocation of the overall sensitivity to each frequency band, representing a unique attention mechanism of multi-band RAREs. The optimal design of the global gain is provided to maximize the overall sensitivity of multi-band RAREs. Subsequently, the optimal Rabi attentions are also derived to maximize the practical multi-band C&S performance. Numerical results confirm the effectiveness of the derived transfer function and the superiority of multi-band RAREs.
Abstract:Low-altitude economy (LAE) represents an emerging economic paradigm that redefines commercial and social aerial activities. Large artificial intelligence models (LAIMs) offer transformative potential to further enhance the intelligence of LAE services. However, deploying LAIMs in LAE poses several challenges, including the significant gap between their computational/storage demands and the limited onboard resources of LAE entities, the mismatch between lab-trained LAIMs and dynamic physical environments, and the inefficiencies of traditional decoupled designs for sensing, communication, and computation. To address these issues, we first propose a hierarchical system architecture tailored for LAIM deployment and present representative LAE application scenarios. Next, we explore key enabling techniques that facilitate the mutual co-evolution of LAIMs and low-altitude systems, and introduce a task-oriented execution pipeline for scalable and adaptive service delivery. Then, the proposed framework is validated through real-world case studies. Finally, we outline open challenges to inspire future research.
Abstract:Generative semantic communication (Gen-SemCom) with large artificial intelligence (AI) model promises a transformative paradigm for 6G networks, which reduces communication costs by transmitting low-dimensional prompts rather than raw data. However, purely prompt-driven generation loses fine-grained visual details. Additionally, there is a lack of systematic metrics to evaluate the performance of Gen-SemCom systems. To address these issues, we develop a hybrid Gen-SemCom system with a critical information embedding (CIE) framework, where both text prompts and semantically critical features are extracted for transmissions. First, a novel approach of semantic filtering is proposed to select and transmit the semantically critical features of images relevant to semantic label. By integrating the text prompt and critical features, the receiver reconstructs high-fidelity images using a diffusion-based generative model. Next, we propose the generative visual information fidelity (GVIF) metric to evaluate the visual quality of the generated image. By characterizing the statistical models of image features, the GVIF metric quantifies the mutual information between the distorted features and their original counterparts. By maximizing the GVIF metric, we design a channel-adaptive Gen-SemCom system that adaptively control the volume of features and compression rate according to the channel state. Experimental results validate the GVIF metric's sensitivity to visual fidelity, correlating with both the PSNR and critical information volume. In addition, the optimized system achieves superior performance over benchmarking schemes in terms of higher PSNR and lower FID scores.
Abstract:The emergence of sixth-generation and beyond communication systems is expected to fundamentally transform digital experiences through introducing unparalleled levels of intelligence, efficiency, and connectivity. A promising technology poised to enable this revolutionary vision is the wireless large AI model (WLAM), characterized by its exceptional capabilities in data processing, inference, and decision-making. In light of these remarkable capabilities, this paper provides a comprehensive survey of WLAM, elucidating its fundamental principles, diverse applications, critical challenges, and future research opportunities. We begin by introducing the background of WLAM and analyzing the key synergies with wireless networks, emphasizing the mutual benefits. Subsequently, we explore the foundational characteristics of WLAM, delving into their unique relevance in wireless environments. Then, the role of WLAM in optimizing wireless communication systems across various use cases and the reciprocal benefits are systematically investigated. Furthermore, we discuss the integration of WLAM with emerging technologies, highlighting their potential to enable transformative capabilities and breakthroughs in wireless communication. Finally, we thoroughly examine the high-level challenges hindering the practical implementation of WLAM and discuss pivotal future research directions.
Abstract:By provisioning inference offloading services, edge inference drives the rapid growth of AI applications at the network edge. However, achieving high task throughput with stringent latency requirements remains a significant challenge. To address this issue, we develop a parameter-sharing AI model loading (PartialLoading) framework for multi-user edge inference, which exploits two key insights: 1) the majority of latency arises from loading AI models into server GPU memory, and 2) different AI models can share a significant number of parameters, for which redundant loading should be avoided. Towards this end, we formulate a joint multi-user scheduling and spectrum bandwidth allocation problem to maximize task throughput by exploiting shared parameter blocks across models. The intuition is to judiciously schedule user requests to reuse the shared parameter blocks between consecutively loaded models, thereby reducing model loading time substantially. To facilitate solution finding, we decouple the problem into two sub-problems, i.e., user scheduling and bandwidth allocation, showing that solving them sequentially is equivalent to solving the original problem. Due to the NP-hardness of the problem, we first study an important special case called the "bottom-layer-sharing" case, where AI models share some bottom layers within clusters, and design a dynamic programming-based algorithm to obtain the optimal solution in polynomial time. For the general case, where shared parameter blocks appear at arbitrary positions within AI models, we propose a greedy heuristic to obtain the sub-optimal solution efficiently. Simulation results demonstrate that the proposed framework significantly improves task throughput under deadline constraints compared with user scheduling without exploiting parameter sharing.
Abstract:The sixth-generation (6G) mobile network is envisioned to incorporate sensing and edge artificial intelligence (AI) as two key functions. Their natural convergence leads to the emergence of Integrated Sensing and Edge AI (ISEA), a novel paradigm enabling real-time acquisition and understanding of sensory information at the network edge. However, ISEA faces a communication bottleneck due to the large number of sensors and the high dimensionality of sensory features. Traditional approaches to communication-efficient ISEA lack awareness of semantic relevance, i.e., the level of relevance between sensor observations and the downstream task. To fill this gap, this paper presents a novel framework for semantic-relevance-aware sensor selection to achieve optimal end-to-end (E2E) task performance under heterogeneous sensor relevance and channel states. E2E sensing accuracy analysis is provided to characterize the sensing task performance in terms of selected sensors' relevance scores and channel states. Building on the results, the sensor-selection problem for accuracy maximization is formulated as an integer program and solved through a tight approximation of the objective. The optimal solution exhibits a priority-based structure, which ranks sensors based on a priority indicator combining relevance scores and channel states and selects top-ranked sensors. Low-complexity algorithms are then developed to determine the optimal numbers of selected sensors and features. Experimental results on both synthetic and real datasets show substantial accuracy gain achieved by the proposed selection scheme compared to existing benchmarks.
Abstract:The emergence of distributed Mixture-of-Experts (DMoE) systems, which deploy expert models at edge nodes, offers a pathway to achieving connected intelligence in sixth-generation (6G) mobile networks and edge artificial intelligence (AI). However, current DMoE systems lack an effective expert selection algorithm to address the simultaneous task-expert relevance and channel diversity inherent in these systems. Traditional AI or communication systems focus on either performance or channel conditions, and direct application of these methods leads to high communication overhead or low performance. To address this, we propose the DMoE protocol to schedule the expert inference and inter-expert transmission. This protocol identifies expert selection and subcarrier allocation as key optimization problems. We formulate an expert selection problem by incorporating both AI performance and channel conditions, and further extend it to a Joint Expert and Subcarrier Allocation (JESA) problem for comprehensive AI and channel management within the DMoE framework. For the NP-hard expert selection problem, we introduce the Dynamic Expert Selection (DES) algorithm, which leverages a linear relaxation as a bounding criterion to significantly reduce search complexity. For the JESA problem, we discover a unique structural property that ensures asymptotic optimality in most scenarios. We propose an iterative algorithm that addresses subcarrier allocation as a subproblem and integrates it with the DES algorithm. The proposed framework effectively manages the tradeoff between task relevance and channel conditions through a tunable importance factor, enabling flexible adaptation to diverse scenarios. Numerical experiments validate the dual benefits of the proposed expert selection algorithm: high performance and significantly reduced cost.
Abstract:This white paper discusses the role of large-scale AI in the telecommunications industry, with a specific focus on the potential of generative AI to revolutionize network functions and user experiences, especially in the context of 6G systems. It highlights the development and deployment of Large Telecom Models (LTMs), which are tailored AI models designed to address the complex challenges faced by modern telecom networks. The paper covers a wide range of topics, from the architecture and deployment strategies of LTMs to their applications in network management, resource allocation, and optimization. It also explores the regulatory, ethical, and standardization considerations for LTMs, offering insights into their future integration into telecom infrastructure. The goal is to provide a comprehensive roadmap for the adoption of LTMs to enhance scalability, performance, and user-centric innovation in telecom networks.
Abstract:The forthcoming sixth-generation (6G) mobile network is set to merge edge artificial intelligence (AI) and integrated sensing and communication (ISAC) extensively, giving rise to the new paradigm of edge intelligent sensing (EI-Sense). This paradigm leverages ubiquitous edge devices for environmental sensing and deploys AI algorithms at edge servers to interpret the observations via remote inference on wirelessly uploaded features. A significant challenge arises in designing EI-Sense systems for 6G mission-critical applications, which demand high performance under stringent latency constraints. To tackle this challenge, we focus on the end-to-end (E2E) performance of EI-Sense and characterize a source-channel tradeoff that balances source distortion and channel reliability. In this work, we establish a theoretical foundation for the source-channel tradeoff by quantifying the effects of source coding on feature discriminant gains and channel reliability on packet loss. Building on this foundation, we design the coding rate control by optimizing the tradeoff to minimize the E2E sensing error probability, leading to a low-complexity algorithm for ultra-low-latency EI-Sense. Finally, we validate our theoretical analysis and proposed coding rate control algorithm through extensive experiments on both synthetic and real datasets, demonstrating the sensing performance gain of our approach with respect to traditional reliability-centric methods.
Abstract:Sensing and edge artificial intelligence (AI) are envisioned as two essential and interconnected functions in sixth-generation (6G) mobile networks. On the one hand, sensing-empowered applications rely on powerful AI models to extract features and understand semantics from ubiquitous wireless sensors. On the other hand, the massive amount of sensory data serves as the fuel to continuously refine edge AI models. This deep integration of sensing and edge AI has given rise to a new task-oriented paradigm known as integrated sensing and edge AI (ISEA), which features a holistic design approach to communication, AI computation, and sensing for optimal sensing-task performance. In this article, we present a comprehensive survey for ISEA. We first provide technical preliminaries for sensing, edge AI, and new communication paradigms in ISEA. Then, we study several use cases of ISEA to demonstrate its practical relevance and introduce current standardization and industrial progress. Next, the design principles, metrics, tradeoffs, and architectures of ISEA are established, followed by a thorough overview of ISEA techniques, including digital air interface, over-the-air computation, and advanced signal processing. Its interplay with various 6G advancements, e.g., new physical-layer and networking techniques, are presented. Finally, we present future research opportunities in ISEA, including the integration of foundation models, convergence of ISEA and integrated sensing and communications (ISAC), and ultra-low-latency ISEA.