Abstract:Recently, machine learning methods have gained significant traction in scientific computing, particularly for solving Partial Differential Equations (PDEs). However, methods based on deep neural networks (DNNs) often lack convergence guarantees and computational efficiency compared to traditional numerical schemes. This work introduces DeePoly, a novel framework that transforms the solution paradigm from pure non-convex parameter optimization to a two-stage approach: first employing a DNN to capture complex global features, followed by linear space optimization with combined DNN-extracted features (Scoper) and polynomial basis functions (Sniper). This strategic combination leverages the complementary strengths of both methods -- DNNs excel at approximating complex global features (i.e., high-gradient features) and stabilize the polynomial approximation while polynomial bases provide high-precision local corrections with convergence guarantees. Theoretical analysis and numerical experiments demonstrate that this approach significantly enhances both high-order accuracy and efficiency across diverse problem types while maintaining mesh-free and scheme-free properties. This paper also serves as a theoretical exposition for the open-source project DeePoly.
Abstract:Cued Speech (CS) enhances lipreading through hand coding, providing precise speech perception support for the hearing-impaired. CS Video-to-Speech generation (CSV2S) task aims to convert the CS visual expressions (CS videos) of hearing-impaired individuals into comprehensible speech signals. Direct generation of speech from CS video (called single CSV2S) yields poor performance due to insufficient CS data. Current research mostly focuses on CS Recognition (CSR), which convert video content into linguistic text. Based on this, one straightforward way of CSV2S is to combine CSR with a Text-to-Speech system. This combined architecture relies on text as an intermediate medium for stepwise cross-modal alignment, which may lead to error propagation and temporal misalignment between speech and video dynamics. To address these challenges, we propose a novel approach that directly generates speech from CS videos without relying on intermediate text. Building upon this, we propose UniCUE, the first unified framework for CSV2S, whose core innovation lies in the integration of the CSR task that provides fine-grained visual-semantic information to facilitate speech generation from CS videos. More precisely, (1) a novel fine-grained semantic alignment pool to ensure precise mapping between visual features and speech contents; (2) a VisioPhonetic adapter to bridge cross-task representations, ensuring seamless compatibility between two distinct tasks (i.e., CSV2S and CSR); (3) a pose-aware visual processor is introduced to enhance fine-grained spatiotemporal correlations between lip and hand movements in CS video. Experiments on our new established Chinese CS dataset (14 cuers1: 8 hearing-impaired and 6 normal-hearing) show that our UniCUE significantly reduces Word Error Rate by 78.3% and improves lip-speech synchronization by 32% compared to the single CSV2S.
Abstract:Existing two-stage Scene Graph Generation (SGG) frameworks typically incorporate a detector to extract relationship features and a classifier to categorize these relationships; therefore, the training paradigm follows a causal chain structure, where the detector's inputs determine the classifier's inputs, which in turn influence the final predictions. However, such a causal chain structure can yield spurious correlations between the detector's inputs and the final predictions, i.e., the prediction of a certain relationship may be influenced by other relationships. This influence can induce at least two observable biases: tail relationships are predicted as head ones, and foreground relationships are predicted as background ones; notably, the latter bias is seldom discussed in the literature. To address this issue, we propose reconstructing the causal chain structure into a reverse causal structure, wherein the classifier's inputs are treated as the confounder, and both the detector's inputs and the final predictions are viewed as causal variables. Specifically, we term the reconstructed causal paradigm as the Reverse causal Framework for SGG (RcSGG). RcSGG initially employs the proposed Active Reverse Estimation (ARE) to intervene on the confounder to estimate the reverse causality, \ie the causality from final predictions to the classifier's inputs. Then, the Maximum Information Sampling (MIS) is suggested to enhance the reverse causality estimation further by considering the relationship information. Theoretically, RcSGG can mitigate the spurious correlations inherent in the SGG framework, subsequently eliminating the induced biases. Comprehensive experiments on popular benchmarks and diverse SGG frameworks show the state-of-the-art mean recall rate.
Abstract:Multimodality-to-Multiaudio (MM2MA) generation faces significant challenges in synthesizing diverse and contextually aligned audio types (e.g., sound effects, speech, music, and songs) from multimodal inputs (e.g., video, text, images), owing to the scarcity of high-quality paired datasets and the lack of robust multi-task learning frameworks. Recently, multi-agent system shows great potential in tackling the above issues. However, directly applying it to MM2MA task presents three critical challenges: (1) inadequate fine-grained understanding of multimodal inputs (especially for video), (2) the inability of single models to handle diverse audio events, and (3) the absence of self-correction mechanisms for reliable outputs. To this end, we propose AudioGenie, a novel training-free multi-agent system featuring a dual-layer architecture with a generation team and a supervisor team. For the generation team, a fine-grained task decomposition and an adaptive Mixture-of-Experts (MoE) collaborative entity are designed for dynamic model selection, and a trial-and-error iterative refinement module is designed for self-correction. The supervisor team ensures temporal-spatial consistency and verifies outputs through feedback loops. Moreover, we build MA-Bench, the first benchmark for MM2MA tasks, comprising 198 annotated videos with multi-type audios. Experiments demonstrate that our AudioGenie outperforms state-of-the-art (SOTA) methods across 9 metrics in 8 tasks. User study further validate the effectiveness of the proposed method in terms of quality, accuracy, alignment, and aesthetic. The anonymous project website with samples can be found at https://audiogenie.github.io/.
Abstract:Vision-Language Models (VLMs) show promise for autonomous driving, yet their struggle with hallucinations, inefficient reasoning, and limited real-world validation hinders accurate perception and robust step-by-step reasoning. To overcome this, we introduce \textbf{AgentThink}, a pioneering unified framework that, for the first time, integrates Chain-of-Thought (CoT) reasoning with dynamic, agent-style tool invocation for autonomous driving tasks. AgentThink's core innovations include: \textbf{(i) Structured Data Generation}, by establishing an autonomous driving tool library to automatically construct structured, self-verified reasoning data explicitly incorporating tool usage for diverse driving scenarios; \textbf{(ii) A Two-stage Training Pipeline}, employing Supervised Fine-Tuning (SFT) with Group Relative Policy Optimization (GRPO) to equip VLMs with the capability for autonomous tool invocation; and \textbf{(iii) Agent-style Tool-Usage Evaluation}, introducing a novel multi-tool assessment protocol to rigorously evaluate the model's tool invocation and utilization. Experiments on the DriveLMM-o1 benchmark demonstrate AgentThink significantly boosts overall reasoning scores by \textbf{53.91\%} and enhances answer accuracy by \textbf{33.54\%}, while markedly improving reasoning quality and consistency. Furthermore, ablation studies and robust zero-shot/few-shot generalization experiments across various benchmarks underscore its powerful capabilities. These findings highlight a promising trajectory for developing trustworthy and tool-aware autonomous driving models.
Abstract:As Large Language Models (LLMs) rapidly advance, we introduce Hunyuan-TurboS, a novel large hybrid Transformer-Mamba Mixture of Experts (MoE) model. It synergistically combines Mamba's long-sequence processing efficiency with Transformer's superior contextual understanding. Hunyuan-TurboS features an adaptive long-short chain-of-thought (CoT) mechanism, dynamically switching between rapid responses for simple queries and deep "thinking" modes for complex problems, optimizing computational resources. Architecturally, this 56B activated (560B total) parameter model employs 128 layers (Mamba2, Attention, FFN) with an innovative AMF/MF block pattern. Faster Mamba2 ensures linear complexity, Grouped-Query Attention minimizes KV cache, and FFNs use an MoE structure. Pre-trained on 16T high-quality tokens, it supports a 256K context length and is the first industry-deployed large-scale Mamba model. Our comprehensive post-training strategy enhances capabilities via Supervised Fine-Tuning (3M instructions), a novel Adaptive Long-short CoT Fusion method, Multi-round Deliberation Learning for iterative improvement, and a two-stage Large-scale Reinforcement Learning process targeting STEM and general instruction-following. Evaluations show strong performance: overall top 7 rank on LMSYS Chatbot Arena with a score of 1356, outperforming leading models like Gemini-2.0-Flash-001 (1352) and o4-mini-2025-04-16 (1345). TurboS also achieves an average of 77.9% across 23 automated benchmarks. Hunyuan-TurboS balances high performance and efficiency, offering substantial capabilities at lower inference costs than many reasoning models, establishing a new paradigm for efficient large-scale pre-trained models.
Abstract:Speculative decoding is a promising approach for accelerating large language models. The primary idea is to use a lightweight draft model to speculate the output of the target model for multiple subsequent timesteps, and then verify them in parallel to determine whether the drafted tokens should be accepted or rejected. To enhance acceptance rates, existing frameworks typically construct token trees containing multiple candidates in each timestep. However, their reliance on token-level verification mechanisms introduces two critical limitations: First, the probability distribution of a sequence differs from that of individual tokens, leading to suboptimal acceptance length. Second, current verification schemes begin from the root node and proceed layer by layer in a top-down manner. Once a parent node is rejected, all its child nodes should be discarded, resulting in inefficient utilization of speculative candidates. This paper introduces Traversal Verification, a novel speculative decoding algorithm that fundamentally rethinks the verification paradigm through leaf-to-root traversal. Our approach considers the acceptance of the entire token sequence from the current node to the root, and preserves potentially valid subsequences that would be prematurely discarded by existing methods. We theoretically prove that the probability distribution obtained through Traversal Verification is identical to that of the target model, guaranteeing lossless inference while achieving substantial acceleration gains. Experimental results across different large language models and multiple tasks show that our method consistently improves acceptance length and throughput over existing methods
Abstract:Utilizing electromagnetic scattering information for SAR data interpretation is currently a prominent research focus in the SAR interpretation domain. Graph Neural Networks (GNNs) can effectively integrate domain-specific physical knowledge and human prior knowledge, thereby alleviating challenges such as limited sample availability and poor generalization in SAR interpretation. In this study, we thoroughly investigate the electromagnetic inverse scattering information of single-channel SAR and re-examine the limitations of applying GNNs to SAR interpretation. We propose the SAR Graph Transformer Recognition Algorithm (SAR-GTR). SAR-GTR carefully considers the attributes and characteristics of different electromagnetic scattering parameters by distinguishing the mapping methods for discrete and continuous parameters, thereby avoiding information confusion and loss. Furthermore, the GTR combines GNNs with the Transformer mechanism and introduces an edge information enhancement channel to facilitate interactive learning of node and edge features, enabling the capture of robust and global structural characteristics of targets. Additionally, the GTR constructs a hierarchical topology-aware system through global node encoding and edge position encoding, fully exploiting the hierarchical structural information of targets. Finally, the effectiveness of the algorithm is validated using the ATRNet-STAR large-scale vehicle dataset.
Abstract:The rapid evolution of generative AI has increased the threat of realistic audio-visual deepfakes, demanding robust detection methods. Existing solutions primarily address unimodal (audio or visual) forgeries but struggle with multimodal manipulations due to inadequate handling of heterogeneous modality features and poor generalization across datasets. To this end, we propose a novel framework called FauForensics by introducing biologically invariant facial action units (FAUs), which is a quantitative descriptor of facial muscle activity linked to emotion physiology. It serves as forgery-resistant representations that reduce domain dependency while capturing subtle dynamics often disrupted in synthetic content. Besides, instead of comparing entire video clips as in prior works, our method computes fine-grained frame-wise audiovisual similarities via a dedicated fusion module augmented with learnable cross-modal queries. It dynamically aligns temporal-spatial lip-audio relationships while mitigating multi-modal feature heterogeneity issues. Experiments on FakeAVCeleb and LAV-DF show state-of-the-art (SOTA) performance and superior cross-dataset generalizability with up to an average of 4.83\% than existing methods.
Abstract:Accurate modeling of closure terms is a critical challenge in engineering and scientific research, particularly when data is sparse (scarse or incomplete), making widely applicable models difficult to develop. This study proposes a novel approach for constructing closure models in such challenging scenarios. We introduce a Series-Parallel Multi-Network Architecture that integrates Physics-Informed Neural Networks (PINNs) to incorporate physical constraints and heterogeneous data from multiple initial and boundary conditions, while employing dedicated subnetworks to independently model unknown closure terms, enhancing generalizability across diverse problems. These closure models are integrated into an accurate Partial Differential Equation (PDE) solver, enabling robust solutions to complex predictive simulations in engineering applications.