Abstract:Night unmanned aerial vehicle (UAV) tracking is impeded by the challenges of poor illumination, with previous daylight-optimized methods demonstrating suboptimal performance in low-light conditions, limiting the utility of UAV applications. To this end, we propose an efficient mamba-based tracker, leveraging dual enhancement techniques to boost night UAV tracking. The mamba-based low-light enhancer, equipped with an illumination estimator and a damage restorer, achieves global image enhancement while preserving the details and structure of low-light images. Additionally, we advance a cross-modal mamba network to achieve efficient interactive learning between vision and language modalities. Extensive experiments showcase that our method achieves advanced performance and exhibits significantly improved computation and memory efficiency. For instance, our method is 2.8$\times$ faster than CiteTracker and reduces 50.2$\%$ GPU memory. Codes will be made publicly available.
Abstract:Self-supervised learning has made substantial strides in image processing, while visual pre-training for autonomous driving is still in its infancy. Existing methods often focus on learning geometric scene information while neglecting texture or treating both aspects separately, hindering comprehensive scene understanding. In this context, we are excited to introduce GaussianPretrain, a novel pre-training paradigm that achieves a holistic understanding of the scene by uniformly integrating geometric and texture representations. Conceptualizing 3D Gaussian anchors as volumetric LiDAR points, our method learns a deepened understanding of scenes to enhance pre-training performance with detailed spatial structure and texture, achieving that 40.6% faster than NeRF-based method UniPAD with 70% GPU memory only. We demonstrate the effectiveness of GaussianPretrain across multiple 3D perception tasks, showing significant performance improvements, such as a 7.05% increase in NDS for 3D object detection, boosts mAP by 1.9% in HD map construction and 0.8% improvement on Occupancy prediction. These significant gains highlight GaussianPretrain's theoretical innovation and strong practical potential, promoting visual pre-training development for autonomous driving. Source code will be available at https://github.com/Public-BOTs/GaussianPretrain
Abstract:Existing cross-domain few-shot learning (CDFSL) methods, which develop source-domain training strategies to enhance model transferability, face challenges with large-scale pre-trained models (LMs) due to inaccessible source data and training strategies. Moreover, fine-tuning LMs for CDFSL demands substantial computational resources, limiting practicality. This paper addresses the source-free CDFSL (SF-CDFSL) problem, tackling few-shot learning (FSL) in the target domain using only pre-trained models and a few target samples without source data or strategies. To overcome the challenge of inaccessible source data, this paper introduces Step-wise Distribution Alignment Guided Style Prompt Tuning (StepSPT), which implicitly narrows domain gaps through prediction distribution optimization. StepSPT proposes a style prompt to align target samples with the desired distribution and adopts a dual-phase optimization process. In the external process, a step-wise distribution alignment strategy factorizes prediction distribution optimization into a multi-step alignment problem to tune the style prompt. In the internal process, the classifier is updated using standard cross-entropy loss. Evaluations on five datasets demonstrate that StepSPT outperforms existing prompt tuning-based methods and SOTAs. Ablation studies further verify its effectiveness. Code will be made publicly available at \url{https://github.com/xuhuali-mxj/StepSPT}.
Abstract:Predicting spatio-temporal traffic flow presents significant challenges due to complex interactions between spatial and temporal factors. Existing approaches often address these dimensions in isolation, neglecting their critical interdependencies. In this paper, we introduce the Spatio-Temporal Unitized Model (STUM), a unified framework designed to capture both spatial and temporal dependencies while addressing spatio-temporal heterogeneity through techniques such as distribution alignment and feature fusion. It also ensures both predictive accuracy and computational efficiency. Central to STUM is the Adaptive Spatio-temporal Unitized Cell (ASTUC), which utilizes low-rank matrices to seamlessly store, update, and interact with space, time, as well as their correlations. Our framework is also modular, allowing it to integrate with various spatio-temporal graph neural networks through components such as backbone models, feature extractors, residual fusion blocks, and predictive modules to collectively enhance forecasting outcomes. Experimental results across multiple real-world datasets demonstrate that STUM consistently improves prediction performance with minimal computational cost. These findings are further supported by hyperparameter optimization, pre-training analysis, and result visualization. We provide our source code for reproducibility at https://anonymous.4open.science/r/STUM-E4F0.
Abstract:The fundamental challenge in SAR target detection lies in developing discriminative, efficient, and robust representations of target characteristics within intricate non-cooperative environments. However, accurate target detection is impeded by factors including the sparse distribution and discrete features of the targets, as well as complex background interference. In this study, we propose a \textbf{Ma}mba \textbf{Di}ffusion \textbf{Net}work (MaDiNet) for SAR target detection. Specifically, MaDiNet conceptualizes SAR target detection as the task of generating the position (center coordinates) and size (width and height) of the bounding boxes in the image space. Furthermore, we design a MambaSAR module to capture intricate spatial structural information of targets and enhance the capability of the model to differentiate between targets and complex backgrounds. The experimental results on extensive SAR target detection datasets achieve SOTA, proving the effectiveness of the proposed network. Code is available at \href{https://github.com/JoyeZLearning/MaDiNet}{https://github.com/JoyeZLearning/MaDiNet}.
Abstract:Occlusion is a longstanding difficulty that challenges the UAV-based object detection. Many works address this problem by adapting the detection model. However, few of them exploit that the UAV could fundamentally improve detection performance by changing its viewpoint. Active Object Detection (AOD) offers an effective way to achieve this purpose. Through Deep Reinforcement Learning (DRL), AOD endows the UAV with the ability of autonomous path planning to search for the observation that is more conducive to target identification. Unfortunately, there exists no available dataset for developing the UAV AOD method. To fill this gap, we released a UAV's eye view active vision dataset named UEVAVD and hope it can facilitate research on the UAV AOD problem. Additionally, we improve the existing DRL-based AOD method by incorporating the inductive bias when learning the state representation. First, due to the partial observability, we use the gated recurrent unit to extract state representations from the observation sequence instead of the single-view observation. Second, we pre-decompose the scene with the Segment Anything Model (SAM) and filter out the irrelevant information with the derived masks. With these practices, the agent could learn an active viewing policy with better generalization capability. The effectiveness of our innovations is validated by the experiments on the UEVAVD dataset. Our dataset will soon be available at https://github.com/Leo000ooo/UEVAVD_dataset.
Abstract:Photoacoustic imaging (PAI) represents an innovative biomedical imaging modality that harnesses the advantages of optical resolution and acoustic penetration depth while ensuring enhanced safety. Despite its promising potential across a diverse array of preclinical and clinical applications, the clinical implementation of PAI faces significant challenges, including the trade-off between penetration depth and spatial resolution, as well as the demand for faster imaging speeds. This paper explores the fundamental principles underlying PAI, with a particular emphasis on three primary implementations: photoacoustic computed tomography (PACT), photoacoustic microscopy (PAM), and photoacoustic endoscopy (PAE). We undertake a critical assessment of their respective strengths and practical limitations. Furthermore, recent developments in utilizing conventional or deep learning (DL) methodologies for image reconstruction and artefact mitigation across PACT, PAM, and PAE are outlined, demonstrating considerable potential to enhance image quality and accelerate imaging processes. Furthermore, this paper examines the recent developments in quantitative analysis within PAI, including the quantification of haemoglobin concentration, oxygen saturation, and other physiological parameters within tissues. Finally, our discussion encompasses current trends and future directions in PAI research while emphasizing the transformative impact of deep learning on advancing PAI.
Abstract:In question-answering scenarios, humans can assess whether the available information is sufficient and seek additional information if necessary, rather than providing a forced answer. In contrast, Vision Language Models (VLMs) typically generate direct, one-shot responses without evaluating the sufficiency of the information. To investigate this gap, we identify a critical and challenging task in the Visual Question Answering (VQA) scenario: can VLMs indicate how to adjust an image when the visual information is insufficient to answer a question? This capability is especially valuable for assisting visually impaired individuals who often need guidance to capture images correctly. To evaluate this capability of current VLMs, we introduce a human-labeled dataset as a benchmark for this task. Additionally, we present an automated framework that generates synthetic training data by simulating ``where to know'' scenarios. Our empirical results show significant performance improvements in mainstream VLMs when fine-tuned with this synthetic data. This study demonstrates the potential to narrow the gap between information assessment and acquisition in VLMs, bringing their performance closer to humans.
Abstract:The integration of the Internet of Things (IoT) and modern Artificial Intelligence (AI) has given rise to a new paradigm known as the Artificial Intelligence of Things (AIoT). In this survey, we provide a systematic and comprehensive review of AIoT research. We examine AIoT literature related to sensing, computing, and networking & communication, which form the three key components of AIoT. In addition to advancements in these areas, we review domain-specific AIoT systems that are designed for various important application domains. We have also created an accompanying GitHub repository, where we compile the papers included in this survey: https://github.com/AIoT-MLSys-Lab/AIoT-Survey. This repository will be actively maintained and updated with new research as it becomes available. As both IoT and AI become increasingly critical to our society, we believe AIoT is emerging as an essential research field at the intersection of IoT and modern AI. We hope this survey will serve as a valuable resource for those engaged in AIoT research and act as a catalyst for future explorations to bridge gaps and drive advancements in this exciting field.
Abstract:Adversarial Training (AT) is one of the most effective methods to enhance the robustness of DNNs. However, existing AT methods suffer from an inherent trade-off between adversarial robustness and clean accuracy, which seriously hinders their real-world deployment. While this problem has been widely studied within the current AT paradigm, existing AT methods still typically experience a reduction in clean accuracy by over 10% to date, without significant improvements in robustness compared with simple baselines like PGD-AT. This inherent trade-off raises a question: whether the current AT paradigm, which assumes to learn the corresponding benign and adversarial samples as the same class, inappropriately combines clean and robust objectives that may be essentially inconsistent. In this work, we surprisingly reveal that up to 40% of CIFAR-10 adversarial samples always fail to satisfy such an assumption across various AT methods and robust models, explicitly indicating the improvement room for the current AT paradigm. Accordingly, to relax the tension between clean and robust learning derived from this overstrict assumption, we propose a new AT paradigm by introducing an additional dummy class for each original class, aiming to accommodate the hard adversarial samples with shifted distribution after perturbation. The robustness w.r.t. these adversarial samples can be achieved by runtime recovery from the predicted dummy classes to their corresponding original ones, eliminating the compromise with clean learning. Building on this new paradigm, we propose a novel plug-and-play AT technology named DUmmy Classes-based Adversarial Training (DUCAT). Extensive experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that the DUCAT concurrently improves clean accuracy and adversarial robustness compared with state-of-the-art benchmarks, effectively breaking the existing inherent trade-off.