Alert button
Picture for Yantao Liu

Yantao Liu

Alert button

Retrieval-Augmented Code Generation for Universal Information Extraction

Nov 06, 2023
Yucan Guo, Zixuan Li, Xiaolong Jin, Yantao Liu, Yutao Zeng, Wenxuan Liu, Xiang Li, Pan Yang, Long Bai, Jiafeng Guo, Xueqi Cheng

Information Extraction (IE) aims to extract structural knowledge (e.g., entities, relations, events) from natural language texts, which brings challenges to existing methods due to task-specific schemas and complex text expressions. Code, as a typical kind of formalized language, is capable of describing structural knowledge under various schemas in a universal way. On the other hand, Large Language Models (LLMs) trained on both codes and texts have demonstrated powerful capabilities of transforming texts into codes, which provides a feasible solution to IE tasks. Therefore, in this paper, we propose a universal retrieval-augmented code generation framework based on LLMs, called Code4UIE, for IE tasks. Specifically, Code4UIE adopts Python classes to define task-specific schemas of various structural knowledge in a universal way. By so doing, extracting knowledge under these schemas can be transformed into generating codes that instantiate the predefined Python classes with the information in texts. To generate these codes more precisely, Code4UIE adopts the in-context learning mechanism to instruct LLMs with examples. In order to obtain appropriate examples for different tasks, Code4UIE explores several example retrieval strategies, which can retrieve examples semantically similar to the given texts. Extensive experiments on five representative IE tasks across nine datasets demonstrate the effectiveness of the Code4UIE framework.

Viaarxiv icon

An In-Context Schema Understanding Method for Knowledge Base Question Answering

Oct 22, 2023
Yantao Liu, Zixuan Li, Xiaolong Jin, Long Bai, Saiping Guan, Jiafeng Guo, Xueqi Cheng

Figure 1 for An In-Context Schema Understanding Method for Knowledge Base Question Answering
Figure 2 for An In-Context Schema Understanding Method for Knowledge Base Question Answering
Figure 3 for An In-Context Schema Understanding Method for Knowledge Base Question Answering

The Knowledge Base Question Answering (KBQA) task aims to answer natural language questions based on a given knowledge base. As a kind of common method for this task, semantic parsing-based ones first convert natural language questions to logical forms (e.g., SPARQL queries) and then execute them on knowledge bases to get answers. Recently, Large Language Models (LLMs) have shown strong abilities in language understanding and may be adopted as semantic parsers in such kinds of methods. However, in doing so, a great challenge for LLMs is to understand the schema of knowledge bases. Therefore, in this paper, we propose an In-Context Schema Understanding (ICSU) method for facilitating LLMs to be used as a semantic parser in KBQA. Specifically, ICSU adopts the In-context Learning mechanism to instruct LLMs to generate SPARQL queries with examples. In order to retrieve appropriate examples from annotated question-query pairs, which contain comprehensive schema information related to questions, ICSU explores four different retrieval strategies. Experimental results on the largest KBQA benchmark, KQA Pro, show that ICSU with all these strategies outperforms that with a random retrieval strategy significantly (from 12\% to 78.76\% in accuracy).

Viaarxiv icon

Nested Event Extraction upon Pivot Element Recogniton

Sep 22, 2023
Weicheng Ren, Zixuan Li, Xiaolong Jin, Long Bai, Miao Su, Yantao Liu, Saiping Guan, Jiafeng Guo, Xueqi Cheng

Nested Event Extraction (NEE) aims to extract complex event structures where an event contains other events as its arguments recursively. Nested events involve a kind of Pivot Elements (PEs) that simultaneously act as arguments of outer events and as triggers of inner events, and thus connect them into nested structures. This special characteristic of PEs brings challenges to existing NEE methods, as they cannot well cope with the dual identities of PEs. Therefore, this paper proposes a new model, called PerNee, which extracts nested events mainly based on recognizing PEs. Specifically, PerNee first recognizes the triggers of both inner and outer events and further recognizes the PEs via classifying the relation type between trigger pairs. In order to obtain better representations of triggers and arguments to further improve NEE performance, it incorporates the information of both event types and argument roles into PerNee through prompt learning. Since existing NEE datasets (e.g., Genia11) are limited to specific domains and contain a narrow range of event types with nested structures, we systematically categorize nested events in generic domain and construct a new NEE dataset, namely ACE2005-Nest. Experimental results demonstrate that PerNee consistently achieves state-of-the-art performance on ACE2005-Nest, Genia11 and Genia13.

Viaarxiv icon

KoRC: Knowledge oriented Reading Comprehension Benchmark for Deep Text Understanding

Jul 06, 2023
Zijun Yao, Yantao Liu, Xin Lv, Shulin Cao, Jifan Yu, Lei Hou, Juanzi Li

Figure 1 for KoRC: Knowledge oriented Reading Comprehension Benchmark for Deep Text Understanding
Figure 2 for KoRC: Knowledge oriented Reading Comprehension Benchmark for Deep Text Understanding
Figure 3 for KoRC: Knowledge oriented Reading Comprehension Benchmark for Deep Text Understanding
Figure 4 for KoRC: Knowledge oriented Reading Comprehension Benchmark for Deep Text Understanding

Deep text understanding, which requires the connections between a given document and prior knowledge beyond its text, has been highlighted by many benchmarks in recent years. However, these benchmarks have encountered two major limitations. On the one hand, most of them require human annotation of knowledge, which leads to limited knowledge coverage. On the other hand, they usually use choices or spans in the texts as the answers, which results in narrow answer space. To overcome these limitations, we build a new challenging benchmark named KoRc in this paper. Compared with previous benchmarks, KoRC has two advantages, i.e., broad knowledge coverage and flexible answer format. Specifically, we utilize massive knowledge bases to guide annotators or large language models (LLMs) to construct knowledgable questions. Moreover, we use labels in knowledge bases rather than spans or choices as the final answers. We test state-of-the-art models on KoRC and the experimental results show that the strongest baseline only achieves 68.3% and 30.0% F1 measure in the in-distribution and out-of-distribution test set, respectively. These results indicate that deep text understanding is still an unsolved challenge. The benchmark dataset, leaderboard, and baseline methods are released in https://github.com/THU-KEG/KoRC.

Viaarxiv icon

KoLA: Carefully Benchmarking World Knowledge of Large Language Models

Jun 15, 2023
Jifan Yu, Xiaozhi Wang, Shangqing Tu, Shulin Cao, Daniel Zhang-Li, Xin Lv, Hao Peng, Zijun Yao, Xiaohan Zhang, Hanming Li, Chunyang Li, Zheyuan Zhang, Yushi Bai, Yantao Liu, Amy Xin, Nianyi Lin, Kaifeng Yun, Linlu Gong, Jianhui Chen, Zhili Wu, Yunjia Qi, Weikai Li, Yong Guan, Kaisheng Zeng, Ji Qi, Hailong Jin, Jinxin Liu, Yu Gu, Yuan Yao, Ning Ding, Lei Hou, Zhiyuan Liu, Bin Xu, Jie Tang, Juanzi Li

Figure 1 for KoLA: Carefully Benchmarking World Knowledge of Large Language Models
Figure 2 for KoLA: Carefully Benchmarking World Knowledge of Large Language Models
Figure 3 for KoLA: Carefully Benchmarking World Knowledge of Large Language Models
Figure 4 for KoLA: Carefully Benchmarking World Knowledge of Large Language Models

The unprecedented performance of large language models (LLMs) necessitates improvements in evaluations. Rather than merely exploring the breadth of LLM abilities, we believe meticulous and thoughtful designs are essential to thorough, unbiased, and applicable evaluations. Given the importance of world knowledge to LLMs, we construct a Knowledge-oriented LLM Assessment benchmark (KoLA), in which we carefully design three crucial factors: (1) For ability modeling, we mimic human cognition to form a four-level taxonomy of knowledge-related abilities, covering $19$ tasks. (2) For data, to ensure fair comparisons, we use both Wikipedia, a corpus prevalently pre-trained by LLMs, along with continuously collected emerging corpora, aiming to evaluate the capacity to handle unseen data and evolving knowledge. (3) For evaluation criteria, we adopt a contrastive system, including overall standard scores for better numerical comparability across tasks and models and a unique self-contrast metric for automatically evaluating knowledge hallucination. We evaluate $21$ open-source and commercial LLMs and obtain some intriguing findings. The KoLA dataset and open-participation leaderboard are publicly released at https://kola.xlore.cn and will be continuously updated to provide references for developing LLMs and knowledge-related systems.

Viaarxiv icon