Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Uncertainty-Aware Reward-based Deep Reinforcement Learning for Intent Analysis of Social Media Information


Feb 19, 2023
Zhen Guo, Qi Zhang, Xinwei An, Qisheng Zhang, Audun Jøsang, Lance M. Kaplan, Feng Chen, Dong H. Jeong, Jin-Hee Cho

Add code

* Accepted version 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

PPO-UE: Proximal Policy Optimization via Uncertainty-Aware Exploration


Dec 13, 2022
Qisheng Zhang, Zhen Guo, Audun Jøsang, Lance M. Kaplan, Feng Chen, Dong H. Jeong, Jin-Hee Cho

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

A Survey on Uncertainty Reasoning and Quantification for Decision Making: Belief Theory Meets Deep Learning


Jun 14, 2022
Zhen Guo, Zelin Wan, Qisheng Zhang, Xujiang Zhao, Feng Chen, Jin-Hee Cho, Qi Zhang, Lance M. Kaplan, Dong H. Jeong, Audun Jøsang

Add code

* First four authors contributed equally 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

End-to-End Multimodal Fact-Checking and Explanation Generation: A Challenging Dataset and Models


May 25, 2022
Barry Menglong Yao, Aditya Shah, Lichao Sun, Jin-Hee Cho, Lifu Huang

Add code

* 12 pages, 4 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Game-Theoretic and Machine Learning-based Approaches for Defensive Deception: A Survey


Jan 21, 2021
Mu Zhu, Ahmed H. Anwar, Zelin Wan, Jin-Hee Cho, Charles Kamhoua, Munindar P. Singh

Add code

* 30 pages, 156 citations 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Multidimensional Uncertainty-Aware Evidential Neural Networks


Dec 26, 2020
Yibo Hu, Yuzhe Ou, Xujiang Zhao, Jin-Hee Cho, Feng Chen

Add code

* AAAI 2021 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Uncertainty Aware Semi-Supervised Learning on Graph Data


Oct 24, 2020
Xujiang Zhao, Feng Chen, Shu Hu, Jin-Hee Cho

Add code

* 27 pages 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Quantifying Classification Uncertainty using Regularized Evidential Neural Networks


Oct 15, 2019
Xujiang Zhao, Yuzhe Ou, Lance Kaplan, Feng Chen, Jin-Hee Cho

Add code

* Presented at AAAI FSS-19: Artificial Intelligence in Government and Public Sector, Arlington, Virginia, USA 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Deep Learning for Predicting Dynamic Uncertain Opinions in Network Data


Oct 12, 2019
Xujiang Zhao, Feng Chen, Jin-Hee Cho

Add code

* 2018 IEEE International Conference on Big Data (Big Data) 
* IEEE Bigdata 2018 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Statistical Estimation of Malware Detection Metrics in the Absence of Ground Truth


Sep 24, 2018
Pang Du, Zheyuan Sun, Huashan Chen, Jin-Hee Cho, Shouhuai Xu

Add code

* IEEE T-IFS (2018) 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email