Abstract:Large Language Models (LLMs) are transforming scientific hypothesis generation and validation by enabling information synthesis, latent relationship discovery, and reasoning augmentation. This survey provides a structured overview of LLM-driven approaches, including symbolic frameworks, generative models, hybrid systems, and multi-agent architectures. We examine techniques such as retrieval-augmented generation, knowledge-graph completion, simulation, causal inference, and tool-assisted reasoning, highlighting trade-offs in interpretability, novelty, and domain alignment. We contrast early symbolic discovery systems (e.g., BACON, KEKADA) with modern LLM pipelines that leverage in-context learning and domain adaptation via fine-tuning, retrieval, and symbolic grounding. For validation, we review simulation, human-AI collaboration, causal modeling, and uncertainty quantification, emphasizing iterative assessment in open-world contexts. The survey maps datasets across biomedicine, materials science, environmental science, and social science, introducing new resources like AHTech and CSKG-600. Finally, we outline a roadmap emphasizing novelty-aware generation, multimodal-symbolic integration, human-in-the-loop systems, and ethical safeguards, positioning LLMs as agents for principled, scalable scientific discovery.
Abstract:The proliferation of open-sourced Large Language Models (LLMs) and diverse downstream tasks necessitates efficient model selection, given the impracticality of fine-tuning all candidates due to computational constraints. Despite the recent advances in LLM selection, a fundamental research question largely remains nascent: how can we model the dynamic behaviors of LLMs during fine-tuning, thereby enhancing our understanding of their generalization performance across diverse downstream tasks? In this work, we propose a novel theoretical framework that provides a proper lens to assess the generalization capabilities of LLMs, thereby enabling accurate and efficient LLM selection for downstream applications. In particular, we first derive a Hessian-based PAC-Bayes generalization bound that unveils fine-tuning dynamics of LLMs and then introduce LENSLLM, a Neural Tangent Kernel(NTK)-based Rectified Scaling Model that enables accurate performance predictions across diverse tasks while maintaining computational efficiency. Extensive empirical results on 3 large-scale benchmarks demonstrate that our model achieves up to 91.1% accuracy and reduces up to 88.5% computational cost in LLM selection, outperforming 5 state-of-the-art methods. We open-source our proposed LENSLLM model and corresponding results at the Github link: https://github.com/Susan571/LENSLLM.git.