Abstract:The task of item-to-item (I2I) retrieval is to identify a set of relevant and highly engaging items based on a given trigger item. It is a crucial component in modern recommendation systems, where users' previously engaged items serve as trigger items to retrieve relevant content for future engagement. However, existing I2I retrieval models in industry are primarily built on co-engagement data and optimized using the recall measure, which overly emphasizes co-engagement patterns while failing to capture semantic relevance. This often leads to overfitting short-term co-engagement trends at the expense of long-term benefits such as discovering novel interests and promoting content diversity. To address this challenge, we propose MTMH, a Multi-Task and Multi-Head I2I retrieval model that achieves both high recall and semantic relevance. Our model consists of two key components: 1) a multi-task learning loss for formally optimizing the trade-off between recall and semantic relevance, and 2) a multi-head I2I retrieval architecture for retrieving both highly co-engaged and semantically relevant items. We evaluate MTMH using proprietary data from a commercial platform serving billions of users and demonstrate that it can improve recall by up to 14.4% and semantic relevance by up to 56.6% compared with prior state-of-the-art models. We also conduct live experiments to verify that MTMH can enhance both short-term consumption metrics and long-term user-experience-related metrics. Our work provides a principled approach for jointly optimizing I2I recall and semantic relevance, which has significant implications for improving the overall performance of recommendation systems.
Abstract:Reinforcement Learning Finetuning (RFT) has significantly advanced the reasoning capabilities of large language models (LLMs) by enabling long chains of thought, self-correction, and effective tool use. While recent works attempt to extend RFT to vision-language models (VLMs), these efforts largely produce text-only reasoning conditioned on static image inputs, falling short of true multimodal reasoning in the response. In contrast, test-time methods like Visual Sketchpad incorporate visual steps but lack training mechanisms. We introduce VTool-R1, the first framework that trains VLMs to generate multimodal chains of thought by interleaving text and intermediate visual reasoning steps. VTool-R1 integrates Python-based visual editing tools into the RFT process, enabling VLMs to learn when and how to generate visual reasoning steps that benefit final reasoning. Trained with outcome-based rewards tied to task accuracy, our approach elicits strategic visual tool use for reasoning without relying on process-based supervision. Experiments on structured visual question answering over charts and tables show that VTool-R1 enhances reasoning performance by teaching VLMs to "think with images" and generate multimodal chain of thoughts with tools.
Abstract:This work investigates the optimal allocation of inference compute across three key scaling factors in video vision language models: language model size, frame count, and the number of visual tokens per frame. While prior works typically focuses on optimizing model efficiency or improving performance without considering resource constraints, we instead identify optimal model configuration under fixed inference compute budgets. We conduct large-scale training sweeps and careful parametric modeling of task performance to identify the inference compute-optimal frontier. Our experiments reveal how task performance depends on scaling factors and finetuning data size, as well as how changes in data size shift the compute-optimal frontier. These findings translate to practical tips for selecting these scaling factors.
Abstract:Federated learning (FL) enables multiple clients to collaboratively train a global model while keeping local data decentralized. Data heterogeneity (non-IID) across clients has imposed significant challenges to FL, which makes local models re-optimize towards their own local optima and forget the global knowledge, resulting in performance degradation and convergence slowdown. Many existing works have attempted to address the non-IID issue by adding an extra global-model-based regularizing item to the local training but without an adaption scheme, which is not efficient enough to achieve high performance with deep learning models. In this paper, we propose a Selective Self-Distillation method for Federated learning (FedSSD), which imposes adaptive constraints on the local updates by self-distilling the global model's knowledge and selectively weighting it by evaluating the credibility at both the class and sample level. The convergence guarantee of FedSSD is theoretically analyzed and extensive experiments are conducted on three public benchmark datasets, which demonstrates that FedSSD achieves better generalization and robustness in fewer communication rounds, compared with other state-of-the-art FL methods.
Abstract:The rapid advancement of large vision-language models (LVLMs) has driven significant progress in multimodal tasks, enabling models to interpret, reason, and generate outputs across both visual and textual domains. While excelling in generative tasks, existing LVLMs often face limitations in tasks requiring high-fidelity representation learning, such as generating image or text embeddings for retrieval. Recent work has proposed finetuning LVLMs for representational learning, but the fine-tuned model often loses its generative capabilities due to the representational learning training paradigm. To address this trade-off, we introduce CAFe, a contrastive-autoregressive fine-tuning framework that enhances LVLMs for both representation and generative tasks. By integrating a contrastive objective with autoregressive language modeling, our approach unifies these traditionally separate tasks, achieving state-of-the-art results in both multimodal retrieval and multimodal generative benchmarks, including object hallucination (OH) mitigation. CAFe establishes a novel framework that synergizes embedding and generative functionalities in a single model, setting a foundation for future multimodal models that excel in both retrieval precision and coherent output generation.
Abstract:Large Language Models (LLMs) have demonstrated tremendous potential as the next-generation ranking-based recommendation system. Many recent works have shown that LLMs can significantly outperform conventional click-through-rate (CTR) prediction approaches. Despite such promising results, the computational inefficiency inherent in the current training paradigm makes it particularly challenging to train LLMs for ranking-based recommendation tasks on large datasets. To train LLMs for CTR prediction, most existing studies adopt the prevalent ''sliding-window'' paradigm. Given a sequence of $m$ user interactions, a unique training prompt is constructed for each interaction by designating it as the prediction target along with its preceding $n$ interactions serving as context. In turn, the sliding-window paradigm results in an overall complexity of $O(mn^2)$ that scales linearly with the length of user interactions. Consequently, a direct adoption to train LLMs with such strategy can result in prohibitively high training costs as the length of interactions grows. To alleviate the computational inefficiency, we propose a novel training paradigm, namely Dynamic Target Isolation (DTI), that structurally parallelizes the training of $k$ (where $k >> 1$) target interactions. Furthermore, we identify two major bottlenecks - hidden-state leakage and positional bias overfitting - that limit DTI to only scale up to a small value of $k$ (e.g., 5) then propose a computationally light solution to effectively tackle each. Through extensive experiments on three widely adopted public CTR datasets, we empirically show that DTI reduces training time by an average of $\textbf{92%}$ (e.g., from $70.5$ hrs to $5.31$ hrs), without compromising CTR prediction performance.
Abstract:Self-supervised learning has been a powerful approach for learning meaningful representations from unlabeled data across various domains, reducing the reliance on large labeled datasets. Inspired by BERT's success in capturing deep bidirectional contexts in natural language processing, similar frameworks have been adapted to other modalities such as audio, with models like BEATs extending the bidirectional training paradigm to audio signals using vector quantization (VQ). However, these frameworks face challenges, notably their dependence on a single codebook for quantization, which may not capture the complex, multifaceted nature of signals. In addition, inefficiencies in codebook utilization lead to underutilized code vectors. To address these limitations, we introduce BRIDLE (Bidirectional Residual Quantization Interleaved Discrete Learning Encoder), a self-supervised encoder pretraining framework that incorporates residual quantization (RQ) into the bidirectional training process, and is generalized for pretraining with audio, image, and video. Using multiple hierarchical codebooks, RQ enables fine-grained discretization in the latent space, enhancing representation quality. BRIDLE involves an interleaved training procedure between the encoder and tokenizer. We evaluate BRIDLE on audio understanding tasks using classification benchmarks, achieving state-of-the-art results, and demonstrate competitive performance on image classification and video classification tasks, showing consistent improvements over traditional VQ methods in downstream performance.
Abstract:How well can Multimodal Large Language Models (MLLMs) understand composite images? Composite images (CIs) are synthetic visuals created by merging multiple visual elements, such as charts, posters, or screenshots, rather than being captured directly by a camera. While CIs are prevalent in real-world applications, recent MLLM developments have primarily focused on interpreting natural images (NIs). Our research reveals that current MLLMs face significant challenges in accurately understanding CIs, often struggling to extract information or perform complex reasoning based on these images. We find that existing training data for CIs are mostly formatted for question-answer tasks (e.g., in datasets like ChartQA and ScienceQA), while high-quality image-caption datasets, critical for robust vision-language alignment, are only available for NIs. To bridge this gap, we introduce Composite Captions (CompCap), a flexible framework that leverages Large Language Models (LLMs) and automation tools to synthesize CIs with accurate and detailed captions. Using CompCap, we curate CompCap-118K, a dataset containing 118K image-caption pairs across six CI types. We validate the effectiveness of CompCap-118K by supervised fine-tuning MLLMs of three sizes: xGen-MM-inst.-4B and LLaVA-NeXT-Vicuna-7B/13B. Empirical results show that CompCap-118K significantly enhances MLLMs' understanding of CIs, yielding average gains of 1.7%, 2.0%, and 2.9% across eleven benchmarks, respectively.
Abstract:Fine-tuning pre-trained language models (LMs) has become the de facto standard in many NLP tasks. Nevertheless, fine-tuned LMs are still prone to robustness issues, such as adversarial robustness and model calibration. Several perspectives of robustness for LMs have been studied independently, but lacking a unified consideration in multiple perspectives. In this paper, we propose Robustifying LMs via Adversarial perturbation with Selective Training (RoAST), a simple yet effective fine-tuning technique to enhance the multi-perspective robustness of LMs in a unified way. RoAST effectively incorporates two important sources for the model robustness, robustness on the perturbed inputs and generalizable knowledge in pre-trained LMs. To be specific, RoAST introduces adversarial perturbation during fine-tuning while the model parameters are selectively updated upon their relative importance to minimize unnecessary deviation. Under a unified evaluation of fine-tuned LMs by incorporating four representative perspectives of model robustness, we demonstrate the effectiveness of RoAST compared to state-of-the-art fine-tuning methods on six different types of LMs, which indicates its usefulness in practice.
Abstract:We present Multiscale Multiview Vision Transformers (MMViT), which introduces multiscale feature maps and multiview encodings to transformer models. Our model encodes different views of the input signal and builds several channel-resolution feature stages to process the multiple views of the input at different resolutions in parallel. At each scale stage, we use a cross-attention block to fuse information across different views. This enables the MMViT model to acquire complex high-dimensional representations of the input at different resolutions. The proposed model can serve as a backbone model in multiple domains. We demonstrate the effectiveness of MMViT on audio and image classification tasks, achieving state-of-the-art results.