Class-incremental learning (CIL) aims to develop a learning system that can continually learn new classes from a data stream without forgetting previously learned classes. When learning classes incrementally, the classifier must be constantly updated to incorporate new classes, and the drift in decision boundary may lead to severe forgetting. This fundamental challenge, however, has not yet been studied extensively, especially in the setting where no samples from old classes are stored for rehearsal. In this paper, we take a closer look at how the drift in the classifier leads to forgetting, and accordingly, design four simple yet (super-) effective solutions to alleviate the classifier drift: an Individual Classifiers with Frozen Feature Extractor (ICE) framework where we individually train a classifier for each learning session, and its three variants ICE-PL, ICE-O, and ICE-PL&O which further take the logits of previously learned classes from old sessions or a constant logit of an Other class as a constraint to the learning of new classifiers. Extensive experiments and analysis on 6 class-incremental information extraction tasks demonstrate that our solutions, especially ICE-O, consistently show significant improvement over the previous state-of-the-art approaches with up to 44.7% absolute F-score gain, providing a strong baseline and insights for future research on class-incremental learning.
Chain-of-Thought prompting (CoT) enables large-scale language models to solve complex reasoning problems by decomposing the problem and tackling it step-by-step. However, Chain-of-Thought is a greedy thinking process that requires the language model to come up with a starting point and generate the next step solely based on previous steps. This thinking process is different from how humans approach a complex problem e.g., we proactively raise sub-problems related to the original problem and recursively answer them. In this work, we propose Socratic Questioning, a divide-and-conquer fashion algorithm that simulates the self-questioning and recursive thinking process. Socratic Questioning is driven by a Self-Questioning module that employs a large-scale language model to propose sub-problems related to the original problem as intermediate steps and Socratic Questioning recursively backtracks and answers the sub-problems until reaches the original problem. We apply our proposed algorithm to the visual question-answering task as a case study and by evaluating it on three public benchmark datasets, we observe a significant performance improvement over all baselines on (almost) all datasets. In addition, the qualitative analysis clearly demonstrates the intermediate thinking steps elicited by Socratic Questioning are similar to the human's recursively thinking process of a complex reasoning problem.
We propose attribute-aware multimodal entity linking, where the input is a mention described with a text and image, and the goal is to predict the corresponding target entity from a multimodal knowledge base (KB) where each entity is also described with a text description, a visual image and a set of attributes and values. To support this research, we construct AMELI, a large-scale dataset consisting of 18,472 reviews and 35,598 products. To establish baseline performance on AMELI, we experiment with the current state-of-the-art multimodal entity linking approaches and our enhanced attribute-aware model and demonstrate the importance of incorporating the attribute information into the entity linking process. To be best of our knowledge, we are the first to build benchmark dataset and solutions for the attribute-aware multimodal entity linking task. Datasets and codes will be made publicly available.
Biomedical entity linking and event extraction are two crucial tasks to support text understanding and retrieval in the biomedical domain. These two tasks intrinsically benefit each other: entity linking disambiguates the biomedical concepts by referring to external knowledge bases and the domain knowledge further provides additional clues to understand and extract the biological processes, while event extraction identifies a key trigger and entities involved to describe each biological process which also captures the structural context to better disambiguate the biomedical entities. However, previous research typically solves these two tasks separately or in a pipeline, leading to error propagation. What's more, it's even more challenging to solve these two tasks together as there is no existing dataset that contains annotations for both tasks. To solve these challenges, we propose joint biomedical entity linking and event extraction by regarding the event structures and entity references in knowledge bases as latent variables and updating the two task-specific models in a hard Expectation-Maximization (EM) fashion: (1) predicting the missing variables for each partially annotated dataset based on the current two task-specific models, and (2) updating the parameters of each model on the corresponding pseudo completed dataset. Experimental results on two benchmark datasets: Genia 2011 for event extraction and BC4GO for entity linking, show that our joint framework significantly improves the model for each individual task and outperforms the strong baselines for both tasks. We will make the code and model checkpoints publicly available once the paper is accepted.
Lifelong event detection aims to incrementally update a model with new event types and data while retaining the capability on previously learned old types. One critical challenge is that the model would catastrophically forget old types when continually trained on new data. In this paper, we introduce Episodic Memory Prompts (EMP) to explicitly preserve the learned task-specific knowledge. Our method adopts continuous prompt for each task and they are optimized to instruct the model prediction and learn event-specific representation. The EMPs learned in previous tasks are carried along with the model in subsequent tasks, and can serve as a memory module that keeps the old knowledge and transferring to new tasks. Experiment results demonstrate the effectiveness of our method. Furthermore, we also conduct a comprehensive analysis of the new and old event types in lifelong learning.