Carnegie Mellon University
Abstract:How do masked language models (MLMs) such as BERT learn contextual representations? In this work, we analyze the learning dynamics of MLMs. We find that MLMs adopt sampled embeddings as anchors to estimate and inject contextual semantics to representations, which limits the efficiency and effectiveness of MLMs. To address these issues, we propose TACO, a simple yet effective representation learning approach to directly model global semantics. TACO extracts and aligns contextual semantics hidden in contextualized representations to encourage models to attend global semantics when generating contextualized representations. Experiments on the GLUE benchmark show that TACO achieves up to 5x speedup and up to 1.2 points average improvement over existing MLMs. The code is available at https://github.com/FUZHIYI/TACO.
Abstract:Recently, parallel text generation has received widespread attention due to its success in generation efficiency. Although many advanced techniques are proposed to improve its generation quality, they still need the help of an autoregressive model for training to overcome the one-to-many multi-modal phenomenon in the dataset, limiting their applications. In this paper, we propose $\textit{latent}$-GLAT, which employs the discrete latent variables to capture word categorical information and invoke an advanced curriculum learning technique, alleviating the multi-modality problem. Experiment results show that our method outperforms strong baselines without the help of an autoregressive model, which further broadens the application scenarios of the parallel decoding paradigm.
Abstract:How to learn a better speech representation for end-to-end speech-to-text translation (ST) with limited labeled data? Existing techniques often attempt to transfer powerful machine translation (MT) capabilities to ST, but neglect the representation discrepancy across modalities. In this paper, we propose the Speech-TExt Manifold Mixup (STEMM) method to calibrate such discrepancy. Specifically, we mix up the representation sequences of different modalities, and take both unimodal speech sequences and multimodal mixed sequences as input to the translation model in parallel, and regularize their output predictions with a self-learning framework. Experiments on MuST-C speech translation benchmark and further analysis show that our method effectively alleviates the cross-modal representation discrepancy, and achieves significant improvements over a strong baseline on eight translation directions.
Abstract:The ability to recognize analogies is fundamental to human cognition. Existing benchmarks to test word analogy do not reveal the underneath process of analogical reasoning of neural models. Holding the belief that models capable of reasoning should be right for the right reasons, we propose a first-of-its-kind Explainable Knowledge-intensive Analogical Reasoning benchmark (E-KAR). Our benchmark consists of 1,655 (in Chinese) and 1,251 (in English) problems sourced from the Civil Service Exams, which require intensive background knowledge to solve. More importantly, we design a free-text explanation scheme to explain whether an analogy should be drawn, and manually annotate them for each and every question and candidate answer. Empirical results suggest that this benchmark is very challenging for some state-of-the-art models for both explanation generation and analogical question answering tasks, which invites further research in this area.
Abstract:How to learn highly compact yet effective sentence representation? Pre-trained language models have been effective in many NLP tasks. However, these models are often huge and produce large sentence embeddings. Moreover, there is a big performance gap between large and small models. In this paper, we propose Homomorphic Projective Distillation (HPD) to learn compressed sentence embeddings. Our method augments a small Transformer encoder model with learnable projection layers to produce compact representations while mimicking a large pre-trained language model to retain the sentence representation quality. We evaluate our method with different model sizes on both semantic textual similarity (STS) and semantic retrieval (SR) tasks. Experiments show that our method achieves 2.7-4.5 points performance gain on STS tasks compared with previous best representations of the same size. In SR tasks, our method improves retrieval speed (8.2$\times$) and memory usage (8.0$\times$) compared with state-of-the-art large models.
Abstract:With the rapid progress of generation technology, it has become necessary to attribute the origin of fake images. Existing works on fake image attribution perform multi-class classification on several Generative Adversarial Network (GAN) models and obtain high accuracies. While encouraging, these works are restricted to model-level attribution, only capable of handling images generated by seen models with a specific seed, loss and dataset, which is limited in real-world scenarios when fake images may be generated by privately trained models. This motivates us to ask whether it is possible to attribute fake images to the source models' architectures even if they are finetuned or retrained under different configurations. In this work, we present the first study on Deepfake Network Architecture Attribution to attribute fake images on architecture-level. Based on an observation that GAN architecture is likely to leave globally consistent fingerprints while traces left by model weights vary in different regions, we provide a simple yet effective solution named DNA-Det for this problem. Extensive experiments on multiple cross-test setups and a large-scale dataset demonstrate the effectiveness of DNA-Det.
Abstract:Smart Internet of Vehicles (IoVs) combined with Artificial Intelligence (AI) will contribute to vehicle decision-making in the Intelligent Transportation System (ITS). Multi-Vehicle Pursuit games (MVP), a multi-vehicle cooperative ability to capture mobile targets, is becoming a hot research topic gradually. Although there are some achievements in the field of MVP in the open space environment, the urban area brings complicated road structures and restricted moving spaces as challenges to the resolution of MVP games. We define an Observation-constrained MVP (OMVP) problem in this paper and propose a Transformer-based Time and Team Reinforcement Learning scheme ($ \text{T}^3 $OMVP) to address the problem. First, a new multi-vehicle pursuit model is constructed based on decentralized partially observed Markov decision processes (Dec-POMDP) to instantiate this problem. Second, by introducing and modifying the transformer-based observation sequence, QMIX is redefined to adapt to the complicated road structure, restricted moving spaces and constrained observations, so as to control vehicles to pursue the target combining the vehicle's observations. Third, a multi-intersection urban environment is built to verify the proposed scheme. Extensive experimental results demonstrate that the proposed $ \text{T}^3 $OMVP scheme achieves significant improvements relative to state-of-the-art QMIX approaches by 9.66%~106.25%. Code is available at https://github.com/pipihaiziguai/T3OMVP.
Abstract:Stable and accurate electroencephalogram (EEG) signal acquisition is fundamental in non-invasive brain-computer interface (BCI) technology. Commonly used EEG acquisition system's hardware and software are usually closed-source. Its inability to flexible expansion and secondary development is a major obstacle to real-time BCI research. This paper presents an open-source, high-precision, multi-channel EEG Acquisition Tool System developed by Beijing University of Posts and Telecommunications named BEATS. It implements a comprehensive system from hardware to software, composes of analog front-end, microprocessor, and software platform. BEATS is capable of collecting multi-channel micro-volt EEG signals up to 4000 $Hz$ with wireless transmission. And it adopts a pluggable structure and easy-to-access materials, which can easily support rapid prototyping, portability, and scalability. Some underlying techniques like direct memory access, interrupt, first in first out are used to ensure the precision and stability of the program at the microsecond level. Compared to state-of-the-art systems, BEATS maintains a relatively high channel number when acquiring data at a high sampling rate, while being quick to set up and use, making it ideal for a wide range of BCI scenarios or long-term daily monitoring. Schematics, source code, and other materials of BEATS are available at https://github.com/bingzant/BEATS.
Abstract:Previous works show the great potential of pre-trained language models (PLMs) for storing a large amount of factual knowledge. However, to figure out whether PLMs can be reliable knowledge sources and used as alternative knowledge bases (KBs), we need to further explore some critical features of PLMs. Firstly, knowledge memorization and identification abilities: traditional KBs can store various types of entities and relationships; do PLMs have a high knowledge capacity to store different types of knowledge? Secondly, reasoning ability: a qualified knowledge source should not only provide a collection of facts, but support a symbolic reasoner. Can PLMs derive new knowledge based on the correlations between facts? To evaluate these features of PLMs, we propose a benchmark, named Knowledge Memorization, Identification, and Reasoning test (KMIR). KMIR covers 3 types of knowledge, including general knowledge, domain-specific knowledge, and commonsense, and provides 184,348 well-designed questions. Preliminary experiments with various representative pre-training language models on KMIR reveal many interesting phenomenons: 1) The memorization ability of PLMs depends more on the number of parameters than training schemes. 2) Current PLMs are struggling to robustly remember the facts. 3) Model compression technology retains the amount of knowledge well, but hurts the identification and reasoning abilities. We hope KMIR can facilitate the design of PLMs as better knowledge sources.
Abstract:Providing user-understandable explanations to justify recommendations could help users better understand the recommended items, increase the system's ease of use, and gain users' trust. A typical approach to realize it is natural language generation. However, previous works mostly adopt recurrent neural networks to meet the ends, leaving the potentially more effective pre-trained Transformer models under-explored. In fact, user and item IDs, as important identifiers in recommender systems, are inherently in different semantic space as words that pre-trained models were already trained on. Thus, how to effectively fuse IDs into such models becomes a critical issue. Inspired by recent advancement in prompt learning, we come up with two solutions: find alternative words to represent IDs (called discrete prompt learning), and directly input ID vectors to a pre-trained model (termed continuous prompt learning). In the latter case, ID vectors are randomly initialized but the model is trained in advance on large corpora, so they are actually in different learning stages. To bridge the gap, we further propose two training strategies: sequential tuning and recommendation as regularization. Extensive experiments show that our continuous prompt learning approach equipped with the training strategies consistently outperforms strong baselines on three datasets of explainable recommendation.