Zhejiang University
Abstract:In natural language processing (NLP) and computer vision (CV), the successful application of foundation models across diverse tasks has demonstrated their remarkable potential. However, despite the rich structural and textual information embedded in knowledge graphs (KGs), existing research of foundation model for KG has primarily focused on their structural aspects, with most efforts restricted to in-KG tasks (e.g., knowledge graph completion, KGC). This limitation has hindered progress in addressing more challenging out-of-KG tasks. In this paper, we introduce MERRY, a foundation model for general knowledge graph reasoning, and investigate its performance across two task categories: in-KG reasoning tasks (e.g., KGC) and out-of-KG tasks (e.g., KG question answering, KGQA). We not only utilize the structural information, but also the textual information in KGs. Specifically, we propose a multi-perspective Conditional Message Passing (CMP) encoding architecture to bridge the gap between textual and structural modalities, enabling their seamless integration. Additionally, we introduce a dynamic residual fusion module to selectively retain relevant textual information and a flexible edge scoring mechanism to adapt to diverse downstream tasks. Comprehensive evaluations on 28 datasets demonstrate that MERRY outperforms existing baselines in most scenarios, showcasing strong reasoning capabilities within KGs and excellent generalization to out-of-KG tasks such as KGQA.
Abstract:Recent advances in multimodal large language models (MLLMs) have significantly enhanced their capabilities; however, their spatial perception abilities remain a notable limitation. To address this challenge, multimodal data synthesis offers a promising solution. Yet, ensuring that synthesized data adhere to spatial common sense is a non-trivial task. In this work, we introduce SKG2Data, a novel multimodal synthesis approach guided by spatial knowledge graphs, grounded in the concept of knowledge-to-data generation. SKG2Data automatically constructs a Spatial Knowledge Graph (SKG) to emulate human-like perception of spatial directions and distances, which is subsequently utilized to guide multimodal data synthesis. Extensive experiments demonstrate that data synthesized from diverse types of spatial knowledge, including direction and distance, not only enhance the spatial perception and reasoning abilities of MLLMs but also exhibit strong generalization capabilities. We hope that the idea of knowledge-based data synthesis can advance the development of spatial intelligence.
Abstract:Large Language Models (LLMs) have shown impressive capabilities in contextual understanding and reasoning. However, evaluating their performance across diverse scientific domains remains underexplored, as existing benchmarks primarily focus on general domains and fail to capture the intricate complexity of scientific data. To bridge this gap, we construct SciCUEval, a comprehensive benchmark dataset tailored to assess the scientific context understanding capability of LLMs. It comprises ten domain-specific sub-datasets spanning biology, chemistry, physics, biomedicine, and materials science, integrating diverse data modalities including structured tables, knowledge graphs, and unstructured texts. SciCUEval systematically evaluates four core competencies: Relevant information identification, Information-absence detection, Multi-source information integration, and Context-aware inference, through a variety of question formats. We conduct extensive evaluations of state-of-the-art LLMs on SciCUEval, providing a fine-grained analysis of their strengths and limitations in scientific context understanding, and offering valuable insights for the future development of scientific-domain LLMs.
Abstract:Problem-solving has been a fundamental driver of human progress in numerous domains. With advancements in artificial intelligence, Large Language Models (LLMs) have emerged as powerful tools capable of tackling complex problems across diverse domains. Unlike traditional computational systems, LLMs combine raw computational power with an approximation of human reasoning, allowing them to generate solutions, make inferences, and even leverage external computational tools. However, applying LLMs to real-world problem-solving presents significant challenges, including multi-step reasoning, domain knowledge integration, and result verification. This survey explores the capabilities and limitations of LLMs in complex problem-solving, examining techniques including Chain-of-Thought (CoT) reasoning, knowledge augmentation, and various LLM-based and tool-based verification techniques. Additionally, we highlight domain-specific challenges in various domains, such as software engineering, mathematical reasoning and proving, data analysis and modeling, and scientific research. The paper further discusses the fundamental limitations of the current LLM solutions and the future directions of LLM-based complex problems solving from the perspective of multi-step reasoning, domain knowledge integration and result verification.
Abstract:In this paper, we introduce EasyEdit2, a framework designed to enable plug-and-play adjustability for controlling Large Language Model (LLM) behaviors. EasyEdit2 supports a wide range of test-time interventions, including safety, sentiment, personality, reasoning patterns, factuality, and language features. Unlike its predecessor, EasyEdit2 features a new architecture specifically designed for seamless model steering. It comprises key modules such as the steering vector generator and the steering vector applier, which enable automatic generation and application of steering vectors to influence the model's behavior without modifying its parameters. One of the main advantages of EasyEdit2 is its ease of use-users do not need extensive technical knowledge. With just a single example, they can effectively guide and adjust the model's responses, making precise control both accessible and efficient. Empirically, we report model steering performance across different LLMs, demonstrating the effectiveness of these techniques. We have released the source code on GitHub at https://github.com/zjunlp/EasyEdit along with a demonstration notebook. In addition, we provide a demo video at https://zjunlp.github.io/project/EasyEdit2/video for a quick introduction.
Abstract:Multi-modal Knowledge Graphs (MMKGs) have been widely applied across various domains for knowledge representation. However, the existing MMKGs are significantly fewer than required, and their construction faces numerous challenges, particularly in ensuring the selection of high-quality, contextually relevant images for knowledge graph enrichment. To address these challenges, we present a framework for constructing MMKGs from conventional KGs. Furthermore, to generate higher-quality images that are more relevant to the context in the given knowledge graph, we designed a neighbor selection method called Visualizable Structural Neighbor Selection (VSNS). This method consists of two modules: Visualizable Neighbor Selection (VNS) and Structural Neighbor Selection (SNS). The VNS module filters relations that are difficult to visualize, while the SNS module selects neighbors that most effectively capture the structural characteristics of the entity. To evaluate the quality of the generated images, we performed qualitative and quantitative evaluations on two datasets, MKG-Y and DB15K. The experimental results indicate that using the VSNS method to select neighbors results in higher-quality images that are more relevant to the knowledge graph.
Abstract:Large Language Models (LLMs) have achieved considerable performance across various agentic planning tasks. However, traditional agent planning approaches adopt a "flood irrigation" methodology that indiscriminately injects gold trajectories, external feedback, and domain knowledge into agent models. This practice overlooks the fundamental human cognitive principle of situational self-awareness during decision-making-the ability to dynamically assess situational demands and strategically employ resources during decision-making. We propose agentic knowledgeable self-awareness to address this gap, a novel paradigm enabling LLM-based agents to autonomously regulate knowledge utilization. Specifically, we propose KnowSelf, a data-centric approach that applies agents with knowledgeable self-awareness like humans. Concretely, we devise a heuristic situation judgement criterion to mark special tokens on the agent's self-explored trajectories for collecting training data. Through a two-stage training process, the agent model can switch between different situations by generating specific special tokens, achieving optimal planning effects with minimal costs. Our experiments demonstrate that KnowSelf can outperform various strong baselines on different tasks and models with minimal use of external knowledge. Code is available at https://github.com/zjunlp/KnowSelf.
Abstract:In the interaction between agents and their environments, agents expand their capabilities by planning and executing actions. However, LLM-based agents face substantial challenges when deployed in novel environments or required to navigate unconventional action spaces. To empower agents to autonomously explore environments, optimize workflows, and enhance their understanding of actions, we propose SynWorld, a framework that allows agents to synthesize possible scenarios with multi-step action invocation within the action space and perform Monte Carlo Tree Search (MCTS) exploration to effectively refine their action knowledge in the current environment. Our experiments demonstrate that SynWorld is an effective and general approach to learning action knowledge in new environments. Code is available at https://github.com/zjunlp/SynWorld.
Abstract:Recent advancements in large language models (LLMs) have accelerated progress toward artificial general intelligence, yet their potential to generate harmful content poses critical safety challenges. Existing alignment methods often struggle to cover diverse safety scenarios and remain vulnerable to adversarial attacks. In this work, we propose Ex-Ante Reasoning Preference Optimization (ERPO), a novel safety alignment framework that equips LLMs with explicit preemptive reasoning through Chain-of-Thought and provides clear evidence for safety judgments by embedding predefined safety rules. Specifically, our approach consists of three stages: first, equipping the model with Ex-Ante reasoning through supervised fine-tuning (SFT) using a constructed reasoning module; second, enhancing safety, usefulness, and efficiency via Direct Preference Optimization (DPO); and third, mitigating inference latency with a length-controlled iterative preference optimization strategy. Experiments on multiple open-source LLMs demonstrate that ERPO significantly enhances safety performance while maintaining response efficiency.
Abstract:Large Language Models (LLMs) have shown remarkable capabilities in reasoning, exemplified by the success of OpenAI-o1 and DeepSeek-R1. However, integrating reasoning with external search processes remains challenging, especially for complex multi-hop questions requiring multiple retrieval steps. We propose ReSearch, a novel framework that trains LLMs to Reason with Search via reinforcement learning without using any supervised data on reasoning steps. Our approach treats search operations as integral components of the reasoning chain, where when and how to perform searches is guided by text-based thinking, and search results subsequently influence further reasoning. We train ReSearch on Qwen2.5-7B(-Instruct) and Qwen2.5-32B(-Instruct) models and conduct extensive experiments. Despite being trained on only one dataset, our models demonstrate strong generalizability across various benchmarks. Analysis reveals that ReSearch naturally elicits advanced reasoning capabilities such as reflection and self-correction during the reinforcement learning process.