Max Planck Institute for Intelligent Systems
Abstract:Explainable recommender systems can explain their recommendation decisions, enhancing user trust in the systems. Most explainable recommender systems either rely on human-annotated rationales to train models for explanation generation or leverage the attention mechanism to extract important text spans from reviews as explanations. The extracted rationales are often confined to an individual review and may fail to identify the implicit features beyond the review text. To avoid the expensive human annotation process and to generate explanations beyond individual reviews, we propose to incorporate a geometric prior learnt from user-item interactions into a variational network which infers latent factors from user-item reviews. The latent factors from an individual user-item pair can be used for both recommendation and explanation generation, which naturally inherit the global characteristics encoded in the prior knowledge. Experimental results on three e-commerce datasets show that our model significantly improves the interpretability of a variational recommender using the Wasserstein distance while achieving performance comparable to existing content-based recommender systems in terms of recommendation behaviours.
Abstract:The indeterminate nature of human motion requires trajectory prediction systems to use a probabilistic model to formulate the multi-modality phenomenon and infer a finite set of future trajectories. However, the inference processes of most existing methods rely on Monte Carlo random sampling, which is insufficient to cover the realistic paths with finite samples, due to the long tail effect of the predicted distribution. To promote the sampling process of stochastic prediction, we propose a novel method, called BOsampler, to adaptively mine potential paths with Bayesian optimization in an unsupervised manner, as a sequential design strategy in which new prediction is dependent on the previously drawn samples. Specifically, we model the trajectory sampling as a Gaussian process and construct an acquisition function to measure the potential sampling value. This acquisition function applies the original distribution as prior and encourages exploring paths in the long-tail region. This sampling method can be integrated with existing stochastic predictive models without retraining. Experimental results on various baseline methods demonstrate the effectiveness of our method.
Abstract:Causal discovery methods are intrinsically constrained by the set of assumptions needed to ensure structure identifiability. Moreover additional restrictions are often imposed in order to simplify the inference task: this is the case for the Gaussian noise assumption on additive non-linear models, which is common to many causal discovery approaches. In this paper we show the shortcomings of inference under this hypothesis, analyzing the risk of edge inversion under violation of Gaussianity of the noise terms. Then, we propose a novel method for inferring the topological ordering of the variables in the causal graph, from data generated according to an additive non-linear model with a generic noise distribution. This leads to NoGAM (Not only Gaussian Additive noise Models), a causal discovery algorithm with a minimal set of assumptions and state of the art performance, experimentally benchmarked on synthetic data.
Abstract:This paper demonstrates how to discover the whole causal graph from the second derivative of the log-likelihood in observational non-linear additive Gaussian noise models. Leveraging scalable machine learning approaches to approximate the score function $\nabla \log p(\mathbf{X})$, we extend the work of Rolland et al. (2022) that only recovers the topological order from the score and requires an expensive pruning step removing spurious edges among those admitted by the ordering. Our analysis leads to DAS (acronym for Discovery At Scale), a practical algorithm that reduces the complexity of the pruning by a factor proportional to the graph size. In practice, DAS achieves competitive accuracy with current state-of-the-art while being over an order of magnitude faster. Overall, our approach enables principled and scalable causal discovery, significantly lowering the compute bar.
Abstract:This paper investigates in which cases continuous optimization for directed acyclic graph (DAG) structure learning can and cannot perform well and why this happens, and suggests possible directions to make the search procedure more reliable. Reisach et al. (2021) suggested that the remarkable performance of several continuous structure learning approaches is primarily driven by a high agreement between the order of increasing marginal variances and the topological order, and demonstrated that these approaches do not perform well after data standardization. We analyze this phenomenon for continuous approaches assuming equal and non-equal noise variances, and show that the statement may not hold in either case by providing counterexamples, justifications, and possible alternative explanations. We further demonstrate that nonconvexity may be a main concern especially for the non-equal noise variances formulation, while recent advances in continuous structure learning fail to achieve improvement in this case. Our findings suggest that future works should take into account the non-equal noise variances formulation to handle more general settings and for a more comprehensive empirical evaluation. Lastly, we provide insights into other aspects of the search procedure, including thresholding and sparsity, and show that they play an important role in the final solutions.
Abstract:Multi-scenario & multi-task learning has been widely applied to many recommendation systems in industrial applications, wherein an effective and practical approach is to carry out multi-scenario transfer learning on the basis of the Mixture-of-Expert (MoE) architecture. However, the MoE-based method, which aims to project all information in the same feature space, cannot effectively deal with the complex relationships inherent among various scenarios and tasks, resulting in unsatisfactory performance. To tackle the problem, we propose a Hierarchical information extraction Network (HiNet) for multi-scenario and multi-task recommendation, which achieves hierarchical extraction based on coarse-to-fine knowledge transfer scheme. The multiple extraction layers of the hierarchical network enable the model to enhance the capability of transferring valuable information across scenarios while preserving specific features of scenarios and tasks. Furthermore, a novel scenario-aware attentive network module is proposed to model correlations between scenarios explicitly. Comprehensive experiments conducted on real-world industrial datasets from Meituan Meishi platform demonstrate that HiNet achieves a new state-of-the-art performance and significantly outperforms existing solutions. HiNet is currently fully deployed in two scenarios and has achieved 2.87% and 1.75% order quantity gain respectively.
Abstract:Playing an important role in Model-Based Reinforcement Learning (MBRL), environment models aim to predict future states based on the past. Existing works usually ignore instantaneous dependence in the state, that is, assuming that the future state variables are conditionally independent given the past states. However, instantaneous dependence is prevalent in many RL environments. For instance, in the stock market, instantaneous dependence can exist between two stocks because the fluctuation of one stock can quickly affect the other and the resolution of price change is lower than that of the effect. In this paper, we prove that with few exceptions, ignoring instantaneous dependence can result in suboptimal policy learning in MBRL. To address the suboptimality problem, we propose a simple plug-and-play method to enable existing MBRL algorithms to take instantaneous dependence into account. Through experiments on two benchmarks, we (1) confirm the existence of instantaneous dependence with visualization; (2) validate our theoretical findings that ignoring instantaneous dependence leads to suboptimal policy; (3) verify that our method effectively enables reinforcement learning with instantaneous dependence and improves policy performance.
Abstract:Collaborative filtering based recommendation learns users' preferences from all users' historical behavior data, and has been popular to facilitate decision making. R Recently, the fairness issue of recommendation has become more and more essential. A recommender system is considered unfair when it does not perform equally well for different user groups according to users' sensitive attributes~(e.g., gender, race). Plenty of methods have been proposed to alleviate unfairness by optimizing a predefined fairness goal or changing the distribution of unbalanced training data. However, they either suffered from the specific fairness optimization metrics or relied on redesigning the current recommendation architecture. In this paper, we study how to improve recommendation fairness from the data augmentation perspective. The recommendation model amplifies the inherent unfairness of imbalanced training data. We augment imbalanced training data towards balanced data distribution to improve fairness. The proposed framework is generally applicable to any embedding-based recommendation, and does not need to pre-define a fairness metric. Extensive experiments on two real-world datasets clearly demonstrate the superiority of our proposed framework. We publish the source code at https://github.com/newlei/FDA.
Abstract:In this paper, we measure the privacy leakage via studying whether graph representations can be inverted to recover the graph used to generate them via graph reconstruction attack (GRA). We propose a GRA that recovers a graph's adjacency matrix from the representations via a graph decoder that minimizes the reconstruction loss between the partial graph and the reconstructed graph. We study three types of representations that are trained on the graph, i.e., representations output from graph convolutional network (GCN), graph attention network (GAT), and our proposed simplicial neural network (SNN) via a higher-order combinatorial Laplacian. Unlike the first two types of representations that only encode pairwise relationships, the third type of representation, i.e., SNN outputs, encodes higher-order interactions (e.g., homological features) between nodes. We find that the SNN outputs reveal the lowest privacy-preserving ability to defend the GRA, followed by those of GATs and GCNs, which indicates the importance of building more private representations with higher-order node information that could defend the potential threats, such as GRAs.
Abstract:Deep generative models have gained popularity in recent years due to their ability to accurately replicate inherent empirical distributions and yield novel samples. In particular, certain advances are proposed wherein the model engenders data examples following specified attributes. Nevertheless, several challenges still exist and are to be overcome, i.e., difficulty in extrapolating out-of-sample data and insufficient learning of disentangled representations. Structural causal models (SCMs), on the other hand, encapsulate the causal factors that govern a generative process and characterize a generative model based on causal relationships, providing crucial insights for addressing the current obstacles in deep generative models. In this paper, we present a comprehensive survey of Causal deep Generative Models (CGMs), which combine SCMs and deep generative models in a way that boosts several trustworthy properties such as robustness, fairness, and interpretability. We provide an overview of the recent advances in CGMs, categorize them based on generative types, and discuss how causality is introduced into the family of deep generative models. We also explore potential avenues for future research in this field.