Abstract:Graph Neural Networks (GNNs) often encounter significant performance degradation under distribution shifts between training and test data, hindering their applicability in real-world scenarios. Recent studies have proposed various methods to address the out-of-distribution generalization challenge, with many methods in the graph domain focusing on directly identifying an invariant subgraph that is predictive of the target label. However, we argue that identifying the edges from the invariant subgraph directly is challenging and error-prone, especially when some spurious edges exhibit strong correlations with the targets. In this paper, we propose PrunE, the first pruning-based graph OOD method that eliminates spurious edges to improve OOD generalizability. By pruning spurious edges, \mine{} retains the invariant subgraph more comprehensively, which is critical for OOD generalization. Specifically, PrunE employs two regularization terms to prune spurious edges: 1) graph size constraint to exclude uninformative spurious edges, and 2) $\epsilon$-probability alignment to further suppress the occurrence of spurious edges. Through theoretical analysis and extensive experiments, we show that PrunE achieves superior OOD performance and outperforms previous state-of-the-art methods significantly. Codes are available at: \href{https://github.com/tianyao-aka/PrunE-GraphOOD}{https://github.com/tianyao-aka/PrunE-GraphOOD}.
Abstract:Flow Matching (FM) is an effective framework for training a model to learn a vector field that transports samples from a source distribution to a target distribution. To train the model, early FM methods use random couplings, which often result in crossing paths and lead the model to learn non-straight trajectories that require many integration steps to generate high-quality samples. To address this, recent methods adopt Optimal Transport (OT) to construct couplings by minimizing geometric distances, which helps reduce path crossings. However, we observe that such geometry-based couplings do not necessarily align with the model's preferred trajectories, making it difficult to learn the vector field induced by these couplings, which prevents the model from learning straight trajectories. Motivated by this, we propose Model-Aligned Coupling (MAC), an effective method that matches training couplings based not only on geometric distance but also on alignment with the model's preferred transport directions based on its prediction error. To avoid the time-costly match process, MAC proposes to select the top-$k$ fraction of couplings with the lowest error for training. Extensive experiments show that MAC significantly improves generation quality and efficiency in few-step settings compared to existing methods. Project page: https://yexionglin.github.io/mac
Abstract:Sparse-view scene reconstruction often faces significant challenges due to the constraints imposed by limited observational data. These limitations result in incomplete information, leading to suboptimal reconstructions using existing methodologies. To address this, we present Intern-GS, a novel approach that effectively leverages rich prior knowledge from vision foundation models to enhance the process of sparse-view Gaussian Splatting, thereby enabling high-quality scene reconstruction. Specifically, Intern-GS utilizes vision foundation models to guide both the initialization and the optimization process of 3D Gaussian splatting, effectively addressing the limitations of sparse inputs. In the initialization process, our method employs DUSt3R to generate a dense and non-redundant gaussian point cloud. This approach significantly alleviates the limitations encountered by traditional structure-from-motion (SfM) methods, which often struggle under sparse-view constraints. During the optimization process, vision foundation models predict depth and appearance for unobserved views, refining the 3D Gaussians to compensate for missing information in unseen regions. Extensive experiments demonstrate that Intern-GS achieves state-of-the-art rendering quality across diverse datasets, including both forward-facing and large-scale scenes, such as LLFF, DTU, and Tanks and Temples.
Abstract:Representation intervention aims to locate and modify the representations that encode the underlying concepts in Large Language Models (LLMs) to elicit the aligned and expected behaviors. Despite the empirical success, it has never been examined whether one could locate the faithful concepts for intervention. In this work, we explore the question in safety alignment. If the interventions are faithful, the intervened LLMs should erase the harmful concepts and be robust to both in-distribution adversarial prompts and the out-of-distribution (OOD) jailbreaks. While it is feasible to erase harmful concepts without degrading the benign functionalities of LLMs in linear settings, we show that it is infeasible in the general non-linear setting. To tackle the issue, we propose Concept Concentration (COCA). Instead of identifying the faithful locations to intervene, COCA refractors the training data with an explicit reasoning process, which firstly identifies the potential unsafe concepts and then decides the responses. Essentially, COCA simplifies the decision boundary between harmful and benign representations, enabling more effective linear erasure. Extensive experiments with multiple representation intervention methods and model architectures demonstrate that COCA significantly reduces both in-distribution and OOD jailbreak success rates, and meanwhile maintaining strong performance on regular tasks such as math and code generation.
Abstract:System 2 reasoning is one of the defining characteristics of intelligence, which requires slow and logical thinking. Human conducts System 2 reasoning via the language of thoughts that organizes the reasoning process as a causal sequence of mental language, or thoughts. Recently, it has been observed that System 2 reasoning can be elicited from Large Language Models (LLMs) pre-trained on large-scale natural languages. However, in this work, we show that there is a significant gap between the modeling of languages and thoughts. As language is primarily a tool for humans to share knowledge and thinking, modeling human language can easily absorb language biases into LLMs deviated from the chain of thoughts in minds. Furthermore, we show that the biases will mislead the eliciting of "thoughts" in LLMs to focus only on a biased part of the premise. To this end, we propose a new prompt technique termed Language-of-Thoughts (LoT) to demonstrate and alleviate this gap. Instead of directly eliciting the chain of thoughts from partial information, LoT instructs LLMs to adjust the order and token used for the expressions of all the relevant information. We show that the simple strategy significantly reduces the language modeling biases in LLMs and improves the performance of LLMs across a variety of reasoning tasks.
Abstract:Loss reweighting has shown significant benefits for machine unlearning with large language models (LLMs). However, their exact functionalities are left unclear and the optimal strategy remains an open question, thus impeding the understanding and improvement of existing methodologies. In this paper, we identify two distinct goals of loss reweighting, namely, Saturation and Importance -- the former indicates that those insufficiently optimized data should be emphasized, while the latter stresses some critical data that are most influential for loss minimization. To study their usefulness, we design specific reweighting strategies for each goal and evaluate their respective effects on unlearning. We conduct extensive empirical analyses on well-established benchmarks, and summarize some important observations as follows: (i) Saturation enhances efficacy more than importance-based reweighting, and their combination can yield additional improvements. (ii) Saturation typically allocates lower weights to data with lower likelihoods, whereas importance-based reweighting does the opposite. (iii) The efficacy of unlearning is also largely influenced by the smoothness and granularity of the weight distributions. Based on these findings, we propose SatImp, a simple reweighting method that combines the advantages of both saturation and importance. Empirical results on extensive datasets validate the efficacy of our method, potentially bridging existing research gaps and indicating directions for future research. Our code is available at https://github.com/Puning97/SatImp-for-LLM-Unlearning.
Abstract:Online AI Feedback (OAIF) presents a promising alternative to Reinforcement Learning from Human Feedback (RLHF) by utilizing online AI preference in aligning language models (LLMs). However, the straightforward replacement of humans with AI deprives LLMs from learning more fine-grained AI supervision beyond binary signals. In this paper, we propose Direct Advantage Regression (DAR), a simple alignment algorithm using online AI reward to optimize policy improvement through weighted supervised fine-tuning. As an RL-free approach, DAR maintains theoretical consistency with online RLHF pipelines while significantly reducing implementation complexity and improving learning efficiency. Our empirical results underscore that AI reward is a better form of AI supervision consistently achieving higher human-AI agreement as opposed to AI preference. Additionally, evaluations using GPT-4-Turbo and MT-bench show that DAR outperforms both OAIF and online RLHF baselines.
Abstract:Malicious applications of visual manipulation have raised serious threats to the security and reputation of users in many fields. To alleviate these issues, adversarial noise-based defenses have been enthusiastically studied in recent years. However, ``data-only" methods tend to distort fake samples in the low-level feature space rather than the high-level semantic space, leading to limitations in resisting malicious manipulation. Frontier research has shown that integrating knowledge in deep learning can produce reliable and generalizable solutions. Inspired by these, we propose a knowledge-guided adversarial defense (KGAD) to actively force malicious manipulation models to output semantically confusing samples. Specifically, in the process of generating adversarial noise, we focus on constructing significant semantic confusions at the domain-specific knowledge level, and exploit a metric closely related to visual perception to replace the general pixel-wise metrics. The generated adversarial noise can actively interfere with the malicious manipulation model by triggering knowledge-guided and perception-related disruptions in the fake samples. To validate the effectiveness of the proposed method, we conduct qualitative and quantitative experiments on human perception and visual quality assessment. The results on two different tasks both show that our defense provides better protection compared to state-of-the-art methods and achieves great generalizability.
Abstract:The advent of large language models (LLMs) has catalyzed a transformative shift in artificial intelligence, paving the way for advanced intelligent agents capable of sophisticated reasoning, robust perception, and versatile action across diverse domains. As these agents increasingly drive AI research and practical applications, their design, evaluation, and continuous improvement present intricate, multifaceted challenges. This survey provides a comprehensive overview, framing intelligent agents within a modular, brain-inspired architecture that integrates principles from cognitive science, neuroscience, and computational research. We structure our exploration into four interconnected parts. First, we delve into the modular foundation of intelligent agents, systematically mapping their cognitive, perceptual, and operational modules onto analogous human brain functionalities, and elucidating core components such as memory, world modeling, reward processing, and emotion-like systems. Second, we discuss self-enhancement and adaptive evolution mechanisms, exploring how agents autonomously refine their capabilities, adapt to dynamic environments, and achieve continual learning through automated optimization paradigms, including emerging AutoML and LLM-driven optimization strategies. Third, we examine collaborative and evolutionary multi-agent systems, investigating the collective intelligence emerging from agent interactions, cooperation, and societal structures, highlighting parallels to human social dynamics. Finally, we address the critical imperative of building safe, secure, and beneficial AI systems, emphasizing intrinsic and extrinsic security threats, ethical alignment, robustness, and practical mitigation strategies necessary for trustworthy real-world deployment.
Abstract:Conditional human animation transforms a static reference image into a dynamic sequence by applying motion cues such as poses. These motion cues are typically derived from video data but are susceptible to limitations including low temporal resolution, motion blur, overexposure, and inaccuracies under low-light conditions. In contrast, event cameras provide data streams with exceptionally high temporal resolution, a wide dynamic range, and inherent resistance to motion blur and exposure issues. In this work, we propose EvAnimate, a framework that leverages event streams as motion cues to animate static human images. Our approach employs a specialized event representation that transforms asynchronous event streams into 3-channel slices with controllable slicing rates and appropriate slice density, ensuring compatibility with diffusion models. Subsequently, a dual-branch architecture generates high-quality videos by harnessing the inherent motion dynamics of the event streams, thereby enhancing both video quality and temporal consistency. Specialized data augmentation strategies further enhance cross-person generalization. Finally, we establish a new benchmarking, including simulated event data for training and validation, and a real-world event dataset capturing human actions under normal and extreme scenarios. The experiment results demonstrate that EvAnimate achieves high temporal fidelity and robust performance in scenarios where traditional video-derived cues fall short.