Sid
Abstract:Geometric estimation is required for scene understanding and analysis in panoramic 360{\deg} images. Current methods usually predict a single feature, such as depth or surface normal. These methods can lack robustness, especially when dealing with intricate textures or complex object surfaces. We introduce a novel multi-task learning (MTL) network that simultaneously estimates depth and surface normals from 360{\deg} images. Our first innovation is our MTL architecture, which enhances predictions for both tasks by integrating geometric information from depth and surface normal estimation, enabling a deeper understanding of 3D scene structure. Another innovation is our fusion module, which bridges the two tasks, allowing the network to learn shared representations that improve accuracy and robustness. Experimental results demonstrate that our MTL architecture significantly outperforms state-of-the-art methods in both depth and surface normal estimation, showing superior performance in complex and diverse scenes. Our model's effectiveness and generalizability, particularly in handling intricate surface textures, establish it as a new benchmark in 360{\deg} image geometric estimation. The code and model are available at \url{https://github.com/huangkun101230/360MTLGeometricEstimation}.
Abstract:Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input and output safety. The paper also presents the results of experiments in which we integrate image, video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The resulting models are not yet being broadly released as they are still under development.
Abstract:The presence of spherical distortion on the Equirectangular image is an acknowledged challenge in dense regression computer vision tasks, such as surface normal estimation. Recent advances in convolutional neural networks (CNNs) strive to mitigate spherical distortion but often fall short in capturing holistic structures effectively, primarily due to their fixed receptive field. On the other hand, vision transformers (ViTs) excel in establishing long-range dependencies through a global self-attention mechanism, yet they encounter limitations in preserving local details. We introduce \textit{PanoNormal}, a monocular surface normal estimation architecture designed for 360{\deg} images, which combines the strengths of CNNs and ViTs. Specifically, we employ a multi-level global self-attention scheme with the consideration of the spherical feature distribution, enhancing the comprehensive understanding of the scene. Our experimental results demonstrate that our approach achieves state-of-the-art performance across multiple popular 360{\deg} monocular datasets. The code and models will be released.
Abstract:Optical coherence tomography (OCT) image analysis plays an important role in the field of ophthalmology. Current successful analysis models rely on available large datasets, which can be challenging to be obtained for certain tasks. The use of deep generative models to create realistic data emerges as a promising approach. However, due to limitations in hardware resources, it is still difficulty to synthesize high-resolution OCT volumes. In this paper, we introduce a cascaded amortized latent diffusion model (CA-LDM) that can synthesis high-resolution OCT volumes in a memory-efficient way. First, we propose non-holistic autoencoders to efficiently build a bidirectional mapping between high-resolution volume space and low-resolution latent space. In tandem with autoencoders, we propose cascaded diffusion processes to synthesize high-resolution OCT volumes with a global-to-local refinement process, amortizing the memory and computational demands. Experiments on a public high-resolution OCT dataset show that our synthetic data have realistic high-resolution and global features, surpassing the capabilities of existing methods. Moreover, performance gains on two down-stream fine-grained segmentation tasks demonstrate the benefit of the proposed method in training deep learning models for medical imaging tasks. The code is public available at: https://github.com/nicetomeetu21/CA-LDM.
Abstract:Document-level Relation Triplet Extraction (DocRTE) is a fundamental task in information systems that aims to simultaneously extract entities with semantic relations from a document. Existing methods heavily rely on a substantial amount of fully labeled data. However, collecting and annotating data for newly emerging relations is time-consuming and labor-intensive. Recent advanced Large Language Models (LLMs), such as ChatGPT and LLaMA, exhibit impressive long-text generation capabilities, inspiring us to explore an alternative approach for obtaining auto-labeled documents with new relations. In this paper, we propose a Zero-shot Document-level Relation Triplet Extraction (ZeroDocRTE) framework, which generates labeled data by retrieval and denoising knowledge from LLMs, called GenRDK. Specifically, we propose a chain-of-retrieval prompt to guide ChatGPT to generate labeled long-text data step by step. To improve the quality of synthetic data, we propose a denoising strategy based on the consistency of cross-document knowledge. Leveraging our denoised synthetic data, we proceed to fine-tune the LLaMA2-13B-Chat for extracting document-level relation triplets. We perform experiments for both zero-shot document-level relation and triplet extraction on two public datasets. The experimental results illustrate that our GenRDK framework outperforms strong baselines.
Abstract:Aspect sentiment quad prediction (ASQP) aims to predict the quad sentiment elements for a given sentence, which is a critical task in the field of aspect-based sentiment analysis. However, the data imbalance issue has not received sufficient attention in ASQP task. In this paper, we divide the issue into two-folds, quad-pattern imbalance and aspect-category imbalance, and propose an Adaptive Data Augmentation (ADA) framework to tackle the imbalance issue. Specifically, a data augmentation process with a condition function adaptively enhances the tail quad patterns and aspect categories, alleviating the data imbalance in ASQP. Following previous studies, we also further explore the generative framework for extracting complete quads by introducing the category prior knowledge and syntax-guided decoding target. Experimental results demonstrate that data augmentation for imbalance in ASQP task can improve the performance, and the proposed ADA method is superior to naive data oversampling.
Abstract:Myopia is a manifestation of visual impairment caused by an excessively elongated eyeball. Image data is critical material for studying high myopia and pathological myopia. Measurements of spherical equivalent and axial length are the gold standards for identifying high myopia, but the available image data for matching them is scarce. In addition, the criteria for defining high myopia vary from study to study, and therefore the inclusion of samples in automated screening efforts requires an appropriate assessment of interpretability. In this work, we propose a model called adjustable robust transformer (ARTran) for high myopia screening of optical coherence tomography (OCT) data. Based on vision transformer, we propose anisotropic patch embedding (APE) to capture more discriminative features of high myopia. To make the model effective under variable screening conditions, we propose an adjustable class embedding (ACE) to replace the fixed class token, which changes the output to adapt to different conditions. Considering the confusion of the data at high myopia and low myopia threshold, we introduce the label noise learning strategy and propose a shifted subspace transition matrix (SST) to enhance the robustness of the model. Besides, combining the two structures proposed above, the model can provide evidence for uncertainty evaluation. The experimental results demonstrate the effectiveness and reliability of the proposed method. Code is available at: https://github.com/maxiao0234/ARTran.
Abstract:Recent researches indicate that Pre-trained Large Language Models (LLMs) possess cognitive constructs similar to those observed in humans, prompting researchers to investigate the cognitive aspects of LLMs. This paper focuses on explicit and implicit social bias, a distinctive two-level cognitive construct in psychology. It posits that individuals' explicit social bias, which is their conscious expression of bias in the statements, may differ from their implicit social bias, which represents their unconscious bias. We propose a two-stage approach and discover a parallel phenomenon in LLMs known as "re-judge inconsistency" in social bias. In the initial stage, the LLM is tasked with automatically completing statements, potentially incorporating implicit social bias. However, in the subsequent stage, the same LLM re-judges the biased statement generated by itself but contradicts it. We propose that this re-judge inconsistency can be similar to the inconsistency between human's unaware implicit social bias and their aware explicit social bias. Experimental investigations on ChatGPT and GPT-4 concerning common gender biases examined in psychology corroborate the highly stable nature of the re-judge inconsistency. This finding may suggest that diverse cognitive constructs emerge as LLMs' capabilities strengthen. Consequently, leveraging psychological theories can provide enhanced insights into the underlying mechanisms governing the expressions of explicit and implicit constructs in LLMs.
Abstract:Most of the existing disease prediction methods in the field of medical image processing fall into two classes, namely image-to-category predictions and image-to-parameter predictions. Few works have focused on image-to-image predictions. Different from multi-horizon predictions in other fields, ophthalmologists prefer to show more confidence in single-horizon predictions due to the low tolerance of predictive risk. We propose a single-horizon disease evolution network (SHENet) to predictively generate post-therapeutic SD-OCT images by inputting pre-therapeutic SD-OCT images with neovascular age-related macular degeneration (nAMD). In SHENet, a feature encoder converts the input SD-OCT images to deep features, then a graph evolution module predicts the process of disease evolution in high-dimensional latent space and outputs the predicted deep features, and lastly, feature decoder recovers the predicted deep features to SD-OCT images. We further propose an evolution reinforcement module to ensure the effectiveness of disease evolution learning and obtain realistic SD-OCT images by adversarial training. SHENet is validated on 383 SD-OCT cubes of 22 nAMD patients based on three well-designed schemes based on the quantitative and qualitative evaluations. Compared with other generative methods, the generative SD-OCT images of SHENet have the highest image quality. Besides, SHENet achieves the best structure protection and content prediction. Qualitative evaluations also demonstrate that SHENet has a better visual effect than other methods. SHENet can generate post-therapeutic SD-OCT images with both high prediction performance and good image quality, which has great potential to help ophthalmologists forecast the therapeutic effect of nAMD.
Abstract:This paper proposes two distributed random reshuffling methods, namely Gradient Tracking with Random Reshuffling (GT-RR) and Exact Diffusion with Random Reshuffling (ED-RR), to solve the distributed optimization problem over a connected network, where a set of agents aim to minimize the average of their local cost functions. Both algorithms invoke random reshuffling (RR) update for each agent, inherit favorable characteristics of RR for minimizing smooth nonconvex objective functions, and improve the performance of previous distributed random reshuffling methods both theoretically and empirically. Specifically, both GT-RR and ED-RR achieve the convergence rate of $O(1/[(1-\lambda)^{1/3}m^{1/3}T^{2/3}])$ in driving the (minimum) expected squared norm of the gradient to zero, where $T$ denotes the number of epochs, $m$ is the sample size for each agent, and $1-\lambda$ represents the spectral gap of the mixing matrix. When the objective functions further satisfy the Polyak-{\L}ojasiewicz (PL) condition, we show GT-RR and ED-RR both achieve $O(1/[(1-\lambda)mT^2])$ convergence rate in terms of the averaged expected differences between the agents' function values and the global minimum value. Notably, both results are comparable to the convergence rates of centralized RR methods (up to constant factors depending on the network topology) and outperform those of previous distributed random reshuffling algorithms. Moreover, we support the theoretical findings with a set of numerical experiments.