



Abstract:Multilingual Large Language Models (LLMs) can process many languages, yet how they internally represent this diversity remains unclear. Do they form shared multilingual representations with language-specific decoding, and if so, why does performance still favor the dominant training language? To address this, we train a series of LLMs on different mixtures of multilingual data and analyze their internal mechanisms using cross-layer transcoders (CLT) and attribution graphs. Our results provide strong evidence for pivot language representations: the model employs nearly identical representations across languages, while language-specific decoding emerges in later layers. Attribution analyses reveal that decoding relies in part on a small set of high-frequency language features in the final layers, which linearly read out language identity from the first layers in the model. By intervening on these features, we can suppress one language and substitute another in the model's outputs. Finally, we study how the dominant training language influences these mechanisms across attribution graphs and decoding pathways. We argue that understanding this pivot-language mechanism is crucial for improving multilingual alignment in LLMs.




Abstract:Multimodal Large Language Models (MLLMs) often suffer from hallucinations, particularly errors in object existence, attributes, or relations, which undermine their reliability. We introduce TACO (Verified Atomic Confidence Estimation), a simple framework that mitigates hallucinations through self-verification and confidence calibration without relying on external vision experts. TACO decomposes responses into atomic queries, paraphrases them to reduce sensitivity to wording, and estimates confidence using self-consistency (black-box) or self-confidence (gray-box) aggregation, before refining answers with a language model. Experiments on five benchmarks (POPE, MME, HallusionBench, AMBER, and MM-Hal Bench) with two MLLMs (\texttt{LLaVA-1.5-7B} and \texttt{CogVLM2}) show that TACO consistently outperforms direct prompting and Visual Contrastive Decoding, reduces systematic biases, and improves confidence calibration, demonstrating its effectiveness in enhancing the faithfulness of MLLMs.




Abstract:Large language models (LLMs) are increasingly deployed in contexts where their failures can have direct sociopolitical consequences. Yet, existing safety benchmarks rarely test vulnerabilities in domains such as political manipulation, propaganda and disinformation generation, or surveillance and information control. We introduce SocialHarmBench, a dataset of 585 prompts spanning 7 sociopolitical categories and 34 countries, designed to surface where LLMs most acutely fail in politically charged contexts. Our evaluations reveal several shortcomings: open-weight models exhibit high vulnerability to harmful compliance, with Mistral-7B reaching attack success rates as high as 97% to 98% in domains such as historical revisionism, propaganda, and political manipulation. Moreover, temporal and geographic analyses show that LLMs are most fragile when confronted with 21st-century or pre-20th-century contexts, and when responding to prompts tied to regions such as Latin America, the USA, and the UK. These findings demonstrate that current safeguards fail to generalize to high-stakes sociopolitical settings, exposing systematic biases and raising concerns about the reliability of LLMs in preserving human rights and democratic values. We share the SocialHarmBench benchmark at https://huggingface.co/datasets/psyonp/SocialHarmBench.




Abstract:Aligning large language models (LLMs) with human preferences is a critical challenge in AI research. While methods like Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) are widely used, they often rely on large, costly preference datasets. The current work lacks methods for high-quality data selection specifically for preference data. In this work, we introduce a novel difficulty-based data selection strategy for preference datasets, grounded in the DPO implicit reward mechanism. By selecting preference data examples with smaller DPO implicit reward gaps, which are indicative of more challenging cases, we improve data efficiency and model alignment. Our approach consistently outperforms five strong baselines across multiple datasets and alignment tasks, achieving superior performance with only 10\% of the original data. This principled, efficient selection method offers a promising solution for scaling LLM alignment with limited resources.
Abstract:As Large Language Models (LLMs) become increasingly integrated into everyday life and information ecosystems, concerns about their implicit biases continue to persist. While prior work has primarily examined socio-demographic and left--right political dimensions, little attention has been paid to how LLMs align with broader geopolitical value systems, particularly the democracy--authoritarianism spectrum. In this paper, we propose a novel methodology to assess such alignment, combining (1) the F-scale, a psychometric tool for measuring authoritarian tendencies, (2) FavScore, a newly introduced metric for evaluating model favorability toward world leaders, and (3) role-model probing to assess which figures are cited as general role-models by LLMs. We find that LLMs generally favor democratic values and leaders, but exhibit increases favorability toward authoritarian figures when prompted in Mandarin. Further, models are found to often cite authoritarian figures as role models, even outside explicit political contexts. These results shed light on ways LLMs may reflect and potentially reinforce global political ideologies, highlighting the importance of evaluating bias beyond conventional socio-political axes. Our code is available at: https://github.com/irenestrauss/Democratic-Authoritarian-Bias-LLMs
Abstract:Large Language Models (LLMs) are powerful tools with profound societal impacts, yet their ability to generate responses to diverse and uncontrolled inputs leaves them vulnerable to adversarial attacks. While existing defenses often struggle to generalize across varying attack types, recent advancements in representation engineering offer promising alternatives. In this work, we propose a defense framework that formulates model defense as a contrastive representation learning (CRL) problem. Our method finetunes a model using a triplet-based loss combined with adversarial hard negative mining to encourage separation between benign and harmful representations. Our experimental results across multiple models demonstrate that our approach outperforms prior representation engineering-based defenses, improving robustness against both input-level and embedding-space attacks without compromising standard performance. Our code is available at https://github.com/samuelsimko/crl-llm-defense
Abstract:Large Language Models (LLMs) are rapidly advancing across diverse domains, yet their application in theoretical physics research is not yet mature. This position paper argues that LLM agents can potentially help accelerate theoretical, computational, and applied physics when properly integrated with domain knowledge and toolbox. We analyze current LLM capabilities for physics -- from mathematical reasoning to code generation -- identifying critical gaps in physical intuition, constraint satisfaction, and reliable reasoning. We envision future physics-specialized LLMs that could handle multimodal data, propose testable hypotheses, and design experiments. Realizing this vision requires addressing fundamental challenges: ensuring physical consistency, and developing robust verification methods. We call for collaborative efforts between physics and AI communities to help advance scientific discovery in physics.




Abstract:The remarkable growth in large language model (LLM) capabilities has spurred exploration into multi-agent systems, with debate frameworks emerging as a promising avenue for enhanced problem-solving. These multi-agent debate (MAD) approaches, where agents collaboratively present, critique, and refine arguments, potentially offer improved reasoning, robustness, and diverse perspectives over monolithic models. Despite prior studies leveraging MAD, a systematic understanding of its effectiveness compared to self-agent methods, particularly under varying conditions, remains elusive. This paper seeks to fill this gap by conceptualizing MAD as a test-time computational scaling technique, distinguished by collaborative refinement and diverse exploration capabilities. We conduct a comprehensive empirical investigation comparing MAD with strong self-agent test-time scaling baselines on mathematical reasoning and safety-related tasks. Our study systematically examines the influence of task difficulty, model scale, and agent diversity on MAD's performance. Key findings reveal that, for mathematical reasoning, MAD offers limited advantages over self-agent scaling but becomes more effective with increased problem difficulty and decreased model capability, while agent diversity shows little benefit. Conversely, for safety tasks, MAD's collaborative refinement can increase vulnerability, but incorporating diverse agent configurations facilitates a gradual reduction in attack success through the collaborative refinement process. We believe our findings provide critical guidance for the future development of more effective and strategically deployed MAD systems.




Abstract:Recent advancements in large language models (LLMs) have unlocked unprecedented possibilities across a range of applications. However, as a community, we believe that the field of Natural Language Processing (NLP) has a growing need to approach deployment with greater intentionality and responsibility. In alignment with the broader vision of AI for Social Good (Toma\v{s}ev et al., 2020), this paper examines the role of NLP in addressing pressing societal challenges. Through a cross-disciplinary analysis of social goals and emerging risks, we highlight promising research directions and outline challenges that must be addressed to ensure responsible and equitable progress in NLP4SG research.
Abstract:As AI systems increasingly navigate applications in healthcare, law, and governance, understanding how they handle ethically complex scenarios becomes critical. Previous work has mainly examined the moral judgments in large language models (LLMs), rather than their underlying moral reasoning process. In contrast, we focus on a large-scale analysis of the moral reasoning traces provided by LLMs. Furthermore, unlike prior work that attempted to draw inferences from only a handful of moral dilemmas, our study leverages over 600 distinct trolley problems as probes for revealing the reasoning patterns that emerge within different LLMs. We introduce and test a taxonomy of moral rationales to systematically classify reasoning traces according to two main normative ethical theories: consequentialism and deontology. Our analysis reveals that LLM chains-of-thought tend to favor deontological principles based on moral obligations, while post-hoc explanations shift notably toward consequentialist rationales that emphasize utility. Our framework provides a foundation for understanding how LLMs process and articulate ethical considerations, an important step toward safe and interpretable deployment of LLMs in high-stakes decision-making environments. Our code is available at https://github.com/keenansamway/moral-lens .