Abstract:In clinical operations, teamwork can be the crucial factor that determines the final outcome. Prior studies have shown that sufficient collaboration is the key factor that determines the outcome of an operation. To understand how the team practices teamwork during the operation, we collected CliniDial from simulations of medical operations. CliniDial includes the audio data and its transcriptions, the simulated physiology signals of the patient manikins, and how the team operates from two camera angles. We annotate behavior codes following an existing framework to understand the teamwork process for CliniDial. We pinpoint three main characteristics of our dataset, including its label imbalances, rich and natural interactions, and multiple modalities, and conduct experiments to test existing LLMs' capabilities on handling data with these characteristics. Experimental results show that CliniDial poses significant challenges to the existing models, inviting future effort on developing methods that can deal with real-world clinical data. We open-source the codebase at https://github.com/MichiganNLP/CliniDial
Abstract:As Large Language Models (LLMs) become increasingly integrated into everyday life and information ecosystems, concerns about their implicit biases continue to persist. While prior work has primarily examined socio-demographic and left--right political dimensions, little attention has been paid to how LLMs align with broader geopolitical value systems, particularly the democracy--authoritarianism spectrum. In this paper, we propose a novel methodology to assess such alignment, combining (1) the F-scale, a psychometric tool for measuring authoritarian tendencies, (2) FavScore, a newly introduced metric for evaluating model favorability toward world leaders, and (3) role-model probing to assess which figures are cited as general role-models by LLMs. We find that LLMs generally favor democratic values and leaders, but exhibit increases favorability toward authoritarian figures when prompted in Mandarin. Further, models are found to often cite authoritarian figures as role models, even outside explicit political contexts. These results shed light on ways LLMs may reflect and potentially reinforce global political ideologies, highlighting the importance of evaluating bias beyond conventional socio-political axes. Our code is available at: https://github.com/irenestrauss/Democratic-Authoritarian-Bias-LLMs
Abstract:Recent advancements in large language models (LLMs) have unlocked unprecedented possibilities across a range of applications. However, as a community, we believe that the field of Natural Language Processing (NLP) has a growing need to approach deployment with greater intentionality and responsibility. In alignment with the broader vision of AI for Social Good (Toma\v{s}ev et al., 2020), this paper examines the role of NLP in addressing pressing societal challenges. Through a cross-disciplinary analysis of social goals and emerging risks, we highlight promising research directions and outline challenges that must be addressed to ensure responsible and equitable progress in NLP4SG research.
Abstract:As AI systems increasingly navigate applications in healthcare, law, and governance, understanding how they handle ethically complex scenarios becomes critical. Previous work has mainly examined the moral judgments in large language models (LLMs), rather than their underlying moral reasoning process. In contrast, we focus on a large-scale analysis of the moral reasoning traces provided by LLMs. Furthermore, unlike prior work that attempted to draw inferences from only a handful of moral dilemmas, our study leverages over 600 distinct trolley problems as probes for revealing the reasoning patterns that emerge within different LLMs. We introduce and test a taxonomy of moral rationales to systematically classify reasoning traces according to two main normative ethical theories: consequentialism and deontology. Our analysis reveals that LLM chains-of-thought tend to favor deontological principles based on moral obligations, while post-hoc explanations shift notably toward consequentialist rationales that emphasize utility. Our framework provides a foundation for understanding how LLMs process and articulate ethical considerations, an important step toward safe and interpretable deployment of LLMs in high-stakes decision-making environments. Our code is available at https://github.com/keenansamway/moral-lens .
Abstract:Recent advances in large language models (LLMs) have enabled their use in complex agentic roles, involving decision-making with humans or other agents, making ethical alignment a key AI safety concern. While prior work has examined both LLMs' moral judgment and strategic behavior in social dilemmas, there is limited understanding of how they act when moral imperatives directly conflict with rewards or incentives. To investigate this, we introduce Moral Behavior in Social Dilemma Simulation (MoralSim) and evaluate how LLMs behave in the prisoner's dilemma and public goods game with morally charged contexts. In MoralSim, we test a range of frontier models across both game structures and three distinct moral framings, enabling a systematic examination of how LLMs navigate social dilemmas in which ethical norms conflict with payoff-maximizing strategies. Our results show substantial variation across models in both their general tendency to act morally and the consistency of their behavior across game types, the specific moral framing, and situational factors such as opponent behavior and survival risks. Crucially, no model exhibits consistently moral behavior in MoralSim, highlighting the need for caution when deploying LLMs in agentic roles where the agent's "self-interest" may conflict with ethical expectations. Our code is available at https://github.com/sbackmann/moralsim.
Abstract:Generative AI (GenAI) models have become vital across industries, yet current evaluation methods have not adapted to their widespread use. Traditional evaluations often rely on benchmarks and fixed datasets, frequently failing to reflect real-world performance, which creates a gap between lab-tested outcomes and practical applications. This white paper proposes a comprehensive framework for how we should evaluate real-world GenAI systems, emphasizing diverse, evolving inputs and holistic, dynamic, and ongoing assessment approaches. The paper offers guidance for practitioners on how to design evaluation methods that accurately reflect real-time capabilities, and provides policymakers with recommendations for crafting GenAI policies focused on societal impacts, rather than fixed performance numbers or parameter sizes. We advocate for holistic frameworks that integrate performance, fairness, and ethics and the use of continuous, outcome-oriented methods that combine human and automated assessments while also being transparent to foster trust among stakeholders. Implementing these strategies ensures GenAI models are not only technically proficient but also ethically responsible and impactful.
Abstract:The ability of Natural Language Processing (NLP) methods to categorize text into multiple classes has motivated their use in online content moderation tasks, such as hate speech and fake news detection. However, there is limited understanding of how or why these methods make such decisions, or why certain content is moderated in the first place. To investigate the hidden mechanisms behind content moderation, we explore multiple directions: 1) training classifiers to reverse-engineer content moderation decisions across countries; 2) explaining content moderation decisions by analyzing Shapley values and LLM-guided explanations. Our primary focus is on content moderation decisions made across countries, using pre-existing corpora sampled from the Twitter Stream Grab. Our experiments reveal interesting patterns in censored posts, both across countries and over time. Through human evaluations of LLM-generated explanations across three LLMs, we assess the effectiveness of using LLMs in content moderation. Finally, we discuss potential future directions, as well as the limitations and ethical considerations of this work. Our code and data are available at https://github.com/causalNLP/censorship
Abstract:Social biases and belief-driven behaviors can significantly impact Large Language Models (LLMs) decisions on several tasks. As LLMs are increasingly used in multi-agent systems for societal simulations, their ability to model fundamental group psychological characteristics remains critical yet under-explored. In this study, we present a multi-agent framework that simulates belief congruence, a classical group psychology theory that plays a crucial role in shaping societal interactions and preferences. Our findings reveal that LLMs exhibit amplified belief congruence compared to humans, across diverse contexts. We further investigate the implications of this behavior on two downstream tasks: (1) misinformation dissemination and (2) LLM learning, finding that belief congruence in LLMs increases misinformation dissemination and impedes learning. To mitigate these negative impacts, we propose strategies inspired by: (1) contact hypothesis, (2) accuracy nudges, and (3) global citizenship framework. Our results show that the best strategies reduce misinformation dissemination by up to 37% and enhance learning by 11%. Bridging social psychology and AI, our work provides insights to navigate real-world interactions using LLMs while addressing belief-driven biases.
Abstract:Existing challenges in misinformation exposure and susceptibility vary across demographic groups, as some populations are more vulnerable to misinformation than others. Large language models (LLMs) introduce new dimensions to these challenges through their ability to generate persuasive content at scale and reinforcing existing biases. This study investigates the bidirectional persuasion dynamics between LLMs and humans when exposed to misinformative content. We analyze human-to-LLM influence using human-stance datasets and assess LLM-to-human influence by generating LLM-based persuasive arguments. Additionally, we use a multi-agent LLM framework to analyze the spread of misinformation under persuasion among demographic-oriented LLM agents. Our findings show that demographic factors influence susceptibility to misinformation in LLMs, closely reflecting the demographic-based patterns seen in human susceptibility. We also find that, similar to human demographic groups, multi-agent LLMs exhibit echo chamber behavior. This research explores the interplay between humans and LLMs, highlighting demographic differences in the context of misinformation and offering insights for future interventions.
Abstract:Cultural and language factors significantly influence counseling, but Natural Language Processing research has not yet examined whether the findings of conversational analysis for counseling conducted in English apply to other languages. This paper presents a first step towards this direction. We introduce MIDAS (Motivational Interviewing Dataset in Spanish), a counseling dataset created from public video sources that contains expert annotations for counseling reflections and questions. Using this dataset, we explore language-based differences in counselor behavior in English and Spanish and develop classifiers in monolingual and multilingual settings, demonstrating its applications in counselor behavioral coding tasks.