Shammie
Abstract:Multilingual Instruction Fine-Tuning (IFT) is essential for enabling large language models (LLMs) to generalize effectively across diverse linguistic and cultural contexts. However, the scarcity of high-quality multilingual training data and corresponding building method remains a critical bottleneck. While data selection has shown promise in English settings, existing methods often fail to generalize across languages due to reliance on simplistic heuristics or language-specific assumptions. In this work, we introduce Multilingual Data Quality and Diversity (M-DaQ), a novel method for improving LLMs multilinguality, by selecting high-quality and semantically diverse multilingual IFT samples. We further conduct the first systematic investigation of the Superficial Alignment Hypothesis (SAH) in multilingual setting. Empirical results across 18 languages demonstrate that models fine-tuned with M-DaQ method achieve significant performance gains over vanilla baselines over 60% win rate. Human evaluations further validate these gains, highlighting the increment of cultural points in the response. We release the M-DaQ code to support future research.
Abstract:Automated issue solving seeks to autonomously identify and repair defective code snippets across an entire codebase. SWE-Bench has emerged as the most widely adopted benchmark for evaluating progress in this area. While LLM-based agentic tools show great promise, they still fail on a substantial portion of tasks. Moreover, current evaluations primarily report aggregate issue-solving rates, which obscure the underlying causes of success and failure, making it challenging to diagnose model weaknesses or guide targeted improvements. To bridge this gap, we first analyze the performance and efficiency of three SOTA tools, spanning both pipeline-based and agentic architectures, in automated issue solving tasks of SWE-Bench-Verified under varying task characteristics. Furthermore, to move from high-level performance metrics to underlying cause analysis, we conducted a systematic manual analysis of 150 failed instances. From this analysis, we developed a comprehensive taxonomy of failure modes comprising 3 primary phases, 9 main categories, and 25 fine-grained subcategories. Then we systematically analyze the distribution of the identified failure modes, the results reveal distinct failure fingerprints between the two architectural paradigms, with the majority of agentic failures stemming from flawed reasoning and cognitive deadlocks. Motivated by these insights, we propose a collaborative Expert-Executor framework. It introduces a supervisory Expert agent tasked with providing strategic oversight and course-correction for a primary Executor agent. This architecture is designed to correct flawed reasoning and break the cognitive deadlocks that frequently lead to failure. Experiments show that our framework solves 22.2% of previously intractable issues for a leading single agent. These findings pave the way for building more robust agents through diagnostic evaluation and collaborative design.
Abstract:With the rapid expansion of user bases on short video platforms, personalized recommendation systems are playing an increasingly critical role in enhancing user experience and optimizing content distribution. Traditional interest modeling methods often rely on unimodal data, such as click logs or text labels, which limits their ability to fully capture user preferences in a complex multimodal content environment. To address this challenge, this paper proposes a multimodal foundation model-based framework for user interest modeling and behavior analysis. By integrating video frames, textual descriptions, and background music into a unified semantic space using cross-modal alignment strategies, the framework constructs fine-grained user interest vectors. Additionally, we introduce a behavior-driven feature embedding mechanism that incorporates viewing, liking, and commenting sequences to model dynamic interest evolution, thereby improving both the timeliness and accuracy of recommendations. In the experimental phase, we conduct extensive evaluations using both public and proprietary short video datasets, comparing our approach against multiple mainstream recommendation algorithms and modeling techniques. Results demonstrate significant improvements in behavior prediction accuracy, interest modeling for cold-start users, and recommendation click-through rates. Moreover, we incorporate interpretability mechanisms using attention weights and feature visualization to reveal the model's decision basis under multimodal inputs and trace interest shifts, thereby enhancing the transparency and controllability of the recommendation system.
Abstract:This paper explores the application of enhancement filtering techniques in neural video compression. Specifically, we categorize these techniques into in-loop contextual filtering and out-of-loop reconstruction enhancement based on whether the enhanced representation affects the subsequent coding loop. In-loop contextual filtering refines the temporal context by mitigating error propagation during frame-by-frame encoding. However, its influence on both the current and subsequent frames poses challenges in adaptively applying filtering throughout the sequence. To address this, we introduce an adaptive coding decision strategy that dynamically determines filtering application during encoding. Additionally, out-of-loop reconstruction enhancement is employed to refine the quality of reconstructed frames, providing a simple yet effective improvement in coding efficiency. To the best of our knowledge, this work presents the first systematic study of enhancement filtering in the context of conditional-based neural video compression. Extensive experiments demonstrate a 7.71% reduction in bit rate compared to state-of-the-art neural video codecs, validating the effectiveness of the proposed approach.
Abstract:Large vision-language models (VLMs) have shown promising capabilities in scene understanding, enhancing the explainability of driving behaviors and interactivity with users. Existing methods primarily fine-tune VLMs on on-board multi-view images and scene reasoning text, but this approach often lacks the holistic and nuanced scene recognition and powerful spatial awareness required for autonomous driving, especially in complex situations. To address this gap, we propose a novel vision-language framework tailored for autonomous driving, called LMAD. Our framework emulates modern end-to-end driving paradigms by incorporating comprehensive scene understanding and a task-specialized structure with VLMs. In particular, we introduce preliminary scene interaction and specialized expert adapters within the same driving task structure, which better align VLMs with autonomous driving scenarios. Furthermore, our approach is designed to be fully compatible with existing VLMs while seamlessly integrating with planning-oriented driving systems. Extensive experiments on the DriveLM and nuScenes-QA datasets demonstrate that LMAD significantly boosts the performance of existing VLMs on driving reasoning tasks,setting a new standard in explainable autonomous driving.
Abstract:Recently, with the emergence of large language models, multimodal LLMs have demonstrated exceptional capabilities in image and video modalities. Despite advancements in video comprehension, the substantial computational demands of long video sequences lead current video LLMs (Vid-LLMs) to employ compression strategies at both the inter-frame level (e.g., uniform sampling of video frames) and intra-frame level (e.g., condensing all visual tokens of each frame into a limited number). However, this approach often neglects the uneven temporal distribution of critical information across frames, risking the omission of keyframes that contain essential temporal and semantic details. To tackle these challenges, we propose KFFocus, a method designed to efficiently compress video tokens and emphasize the informative context present within video frames. We substitute uniform sampling with a refined approach inspired by classic video compression principles to identify and capture keyframes based on their temporal redundancy. By assigning varying condensation ratios to frames based on their contextual relevance, KFFocus efficiently reduces token redundancy while preserving informative content details. Additionally, we introduce a spatiotemporal modeling module that encodes both the temporal relationships between video frames and the spatial structure within each frame, thus providing Vid-LLMs with a nuanced understanding of spatial-temporal dynamics. Extensive experiments on widely recognized video understanding benchmarks, especially long video scenarios, demonstrate that KFFocus significantly outperforms existing methods, achieving substantial computational efficiency and enhanced accuracy.
Abstract:Sharpening is a widely adopted video enhancement technique. However, uniform sharpening intensity ignores texture variations, degrading video quality. Sharpening also increases bitrate, and there's a lack of techniques to optimally allocate these additional bits across diverse regions. Thus, this paper proposes RPO-AdaSharp, an end-to-end region-adaptive video sharpening model for both perceptual enhancement and bitrate savings. We use the coding tree unit (CTU) partition mask as prior information to guide and constrain the allocation of increased bits. Experiments on benchmarks demonstrate the effectiveness of the proposed model qualitatively and quantitatively.
Abstract:High-frequency components are crucial for maintaining video clarity and realism, but they also significantly impact coding bitrate, resulting in increased bandwidth and storage costs. This paper presents an end-to-end learning-based framework for adaptive high-frequency preprocessing to enhance subjective quality and save bitrate in video coding. The framework employs the Frequency-attentive Feature pyramid Prediction Network (FFPN) to predict the optimal high-frequency preprocessing strategy, guiding subsequent filtering operators to achieve the optimal tradeoff between bitrate and quality after compression. For training FFPN, we pseudo-label each training video with the optimal strategy, determined by comparing the rate-distortion (RD) performance across different preprocessing types and strengths. Distortion is measured using the latest quality assessment metric. Comprehensive evaluations on multiple datasets demonstrate the visually appealing enhancement capabilities and bitrate savings achieved by our framework.
Abstract:Sharpening is a widely adopted technique to improve video quality, which can effectively emphasize textures and alleviate blurring. However, increasing the sharpening level comes with a higher video bitrate, resulting in degraded Quality of Service (QoS). Furthermore, the video quality does not necessarily improve with increasing sharpening levels, leading to issues such as over-sharpening. Clearly, it is essential to figure out how to boost video quality with a proper sharpening level while also controlling bandwidth costs effectively. This paper thus proposes a novel Frequency-assisted Sharpening level Prediction model (FreqSP). We first label each video with the sharpening level correlating to the optimal bitrate and quality tradeoff as ground truth. Then taking uncompressed source videos as inputs, the proposed FreqSP leverages intricate CNN features and high-frequency components to estimate the optimal sharpening level. Extensive experiments demonstrate the effectiveness of our method.
Abstract:This study examined whether embedding LLM-guided reflection prompts in an interactive AI-generated podcast improved learning and user experience compared to a version without prompts. Thirty-six undergraduates participated, and while learning outcomes were similar across conditions, reflection prompts reduced perceived attractiveness, highlighting a call for more research on reflective interactivity design.