Shammie
Abstract:Electronic Health Records (EHR)-based disease prediction models have demonstrated significant clinical value in promoting precision medicine and enabling early intervention. However, existing large language models face two major challenges: insufficient representation of medical knowledge and low efficiency in clinical deployment. To address these challenges, this study proposes the CKD-EHR (Clinical Knowledge Distillation for EHR) framework, which achieves efficient and accurate disease risk prediction through knowledge distillation techniques. Specifically, the large language model Qwen2.5-7B is first fine-tuned on medical knowledge-enhanced data to serve as the teacher model.It then generates interpretable soft labels through a multi-granularity attention distillation mechanism. Finally, the distilled knowledge is transferred to a lightweight BERT student model. Experimental results show that on the MIMIC-III dataset, CKD-EHR significantly outperforms the baseline model:diagnostic accuracy is increased by 9%, F1-score is improved by 27%, and a 22.2 times inference speedup is achieved. This innovative solution not only greatly improves resource utilization efficiency but also significantly enhances the accuracy and timeliness of diagnosis, providing a practical technical approach for resource optimization in clinical settings. The code and data for this research are available athttps://github.com/209506702/CKD_EHR.
Abstract:The cross-Modality Domain Adaptation (crossMoDA) challenge series, initiated in 2021 in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), focuses on unsupervised cross-modality segmentation, learning from contrast-enhanced T1 (ceT1) and transferring to T2 MRI. The task is an extreme example of domain shift chosen to serve as a meaningful and illustrative benchmark. From a clinical application perspective, it aims to automate Vestibular Schwannoma (VS) and cochlea segmentation on T2 scans for more cost-effective VS management. Over time, the challenge objectives have evolved to enhance its clinical relevance. The challenge evolved from using single-institutional data and basic segmentation in 2021 to incorporating multi-institutional data and Koos grading in 2022, and by 2023, it included heterogeneous routine data and sub-segmentation of intra- and extra-meatal tumour components. In this work, we report the findings of the 2022 and 2023 editions and perform a retrospective analysis of the challenge progression over the years. The observations from the successive challenge contributions indicate that the number of outliers decreases with an expanding dataset. This is notable since the diversity of scanning protocols of the datasets concurrently increased. The winning approach of the 2023 edition reduced the number of outliers on the 2021 and 2022 testing data, demonstrating how increased data heterogeneity can enhance segmentation performance even on homogeneous data. However, the cochlea Dice score declined in 2023, likely due to the added complexity from tumour sub-annotations affecting overall segmentation performance. While progress is still needed for clinically acceptable VS segmentation, the plateauing performance suggests that a more challenging cross-modal task may better serve future benchmarking.
Abstract:With the remarkable progress in neural P-frame video coding, neural B-frame coding has recently emerged as a critical research direction. However, most existing neural B-frame codecs directly adopt P-frame coding tools without adequately addressing the unique challenges of B-frame compression, leading to suboptimal performance. To bridge this gap, we propose novel enhancements for motion compression and temporal fusion for neural B-frame coding. First, we design a fine-grained motion compression method. This method incorporates an interactive dual-branch motion auto-encoder with per-branch adaptive quantization steps, which enables fine-grained compression of bi-directional motion vectors while accommodating their asymmetric bitrate allocation and reconstruction quality requirements. Furthermore, this method involves an interactive motion entropy model that exploits correlations between bi-directional motion latent representations by interactively leveraging partitioned latent segments as directional priors. Second, we propose a selective temporal fusion method that predicts bi-directional fusion weights to achieve discriminative utilization of bi-directional multi-scale temporal contexts with varying qualities. Additionally, this method introduces a hyperprior-based implicit alignment mechanism for contextual entropy modeling. By treating the hyperprior as a surrogate for the contextual latent representation, this mechanism implicitly mitigates the misalignment in the fused bi-directional temporal priors. Extensive experiments demonstrate that our proposed codec outperforms state-of-the-art neural B-frame codecs and achieves comparable or even superior compression performance to the H.266/VVC reference software under random-access configurations.
Abstract:With emerging application of Federated Learning (FL) in decision-making scenarios, it is imperative to regulate model fairness to prevent disparities across sensitive groups (e.g., female, male). Current research predominantly focuses on two concepts of group fairness within FL: Global Fairness (overall model disparity across all clients) and Local Fairness (the disparity within each client). However, the non-decomposable, non-differentiable nature of fairness criteria pose two fundamental, unresolved challenges for fair FL: (i) Harmonizing global and local fairness in multi-class classification; (ii) Enabling a controllable, optimal accuracy-fairness trade-off. To tackle the aforementioned challenges, we propose a novel controllable federated group-fairness calibration framework, named FedFACT. FedFACT identifies the Bayes-optimal classifiers under both global and local fairness constraints in multi-class case, yielding models with minimal performance decline while guaranteeing fairness. To effectively realize an adjustable, optimal accuracy-fairness balance, we derive specific characterizations of the Bayes-optimal fair classifiers for reformulating fair FL as personalized cost-sensitive learning problem for in-processing, and bi-level optimization for post-processing. Theoretically, we provide convergence and generalization guarantees for FedFACT to approach the near-optimal accuracy under given fairness levels. Extensive experiments on multiple datasets across various data heterogeneity demonstrate that FedFACT consistently outperforms baselines in balancing accuracy and global-local fairness.
Abstract:Overlapping Speech Detection (OSD) aims to identify regions where multiple speakers overlap in a conversation, a critical challenge in multi-party speech processing. This work proposes a speaker-aware progressive OSD model that leverages a progressive training strategy to enhance the correlation between subtasks such as voice activity detection (VAD) and overlap detection. To improve acoustic representation, we explore the effectiveness of state-of-the-art self-supervised learning (SSL) models, including WavLM and wav2vec 2.0, while incorporating a speaker attention module to enrich features with frame-level speaker information. Experimental results show that the proposed method achieves state-of-the-art performance, with an F1 score of 82.76\% on the AMI test set, demonstrating its robustness and effectiveness in OSD.
Abstract:Vision-and-Language Navigation (VLN) requires the agent to navigate by following natural instructions under partial observability, making it difficult to align perception with language. Recent methods mitigate this by imagining future scenes, yet they rely on vision-based synthesis, leading to high computational cost and redundant details. To this end, we propose to adaptively imagine key environmental semantics via \textit{language} form, enabling a more reliable and efficient strategy. Specifically, we introduce a novel Adaptive Text Dreamer (ATD), a dual-branch self-guided imagination policy built upon a large language model (LLM). ATD is designed with a human-like left-right brain architecture, where the left brain focuses on logical integration, and the right brain is responsible for imaginative prediction of future scenes. To achieve this, we fine-tune only the Q-former within both brains to efficiently activate domain-specific knowledge in the LLM, enabling dynamic updates of logical reasoning and imagination during navigation. Furthermore, we introduce a cross-interaction mechanism to regularize the imagined outputs and inject them into a navigation expert module, allowing ATD to jointly exploit both the reasoning capacity of the LLM and the expertise of the navigation model. We conduct extensive experiments on the R2R benchmark, where ATD achieves state-of-the-art performance with fewer parameters. The code is \href{https://github.com/zhangpingrui/Adaptive-Text-Dreamer}{here}.
Abstract:In practical domains, high-dimensional data are usually associated with diverse semantic labels, whereas traditional feature selection methods are designed for single-label data. Moreover, existing multi-label methods encounter two main challenges in semi-supervised scenarios: (1). Most semi-supervised methods fail to evaluate the label correlations without enough labeled samples, which are the critical information of multi-label feature selection, making label-specific features discarded. (2). The similarity graph structure directly derived from the original feature space is suboptimal for multi-label problems in existing graph-based methods, leading to unreliable soft labels and degraded feature selection performance. To overcome them, we propose a consistent sparse graph learning method for multi-label semi-supervised feature selection (SGMFS), which can enhance the feature selection performance by maintaining space consistency and learning label correlations in semi-supervised scenarios. Specifically, for Challenge (1), SGMFS learns a low-dimensional and independent label subspace from the projected features, which can compatibly cross multiple labels and effectively achieve the label correlations. For Challenge (2), instead of constructing a fixed similarity graph for semi-supervised learning, SGMFS thoroughly explores the intrinsic structure of the data by performing sparse reconstruction of samples in both the label space and the learned subspace simultaneously. In this way, the similarity graph can be adaptively learned to maintain the consistency between label space and the learned subspace, which can promote propagating proper soft labels for unlabeled samples, facilitating the ultimate feature selection. An effective solution with fast convergence is designed to optimize the objective function. Extensive experiments validate the superiority of SGMFS.
Abstract:Despite doubts on data quality, instruction synthesis has been widely applied into instruction tuning (IT) of LLMs as an economic and rapid alternative. Recent endeavors focus on improving data quality for synthesized instruction pairs in English and have facilitated IT of English-centric LLMs. However, data quality issues in multilingual synthesized instruction pairs are even more severe, since the common synthesizing practice is to translate English synthesized data into other languages using machine translation (MT). Besides the known content errors in these English synthesized data, multilingual synthesized instruction data are further exposed to defects introduced by MT and face insufficient localization of the target languages. In this paper, we propose MIDB, a Multilingual Instruction Data Booster to automatically address the quality issues in multilingual synthesized data. MIDB is trained on around 36.8k revision examples across 16 languages by human linguistic experts, thereby can boost the low-quality data by addressing content errors and MT defects, and improving localization in these synthesized data. Both automatic and human evaluation indicate that not only MIDB steadily improved instruction data quality in 16 languages, but also the instruction-following and cultural-understanding abilities of multilingual LLMs fine-tuned on MIDB-boosted data were significantly enhanced.
Abstract:Large language models (LLMs) are widely used as evaluators for open-ended tasks, while previous research has emphasized biases in LLM evaluations, the issue of non-transitivity in pairwise comparisons remains unresolved: non-transitive preferences for pairwise comparisons, where evaluators prefer A over B, B over C, but C over A. Our results suggest that low-quality training data may reduce the transitivity of preferences generated by the Evaluator LLM. To address this, We propose a graph-theoretic framework to analyze and mitigate this problem by modeling pairwise preferences as tournament graphs. We quantify non-transitivity and introduce directed graph structural entropy to measure the overall clarity of preferences. Our analysis reveals significant non-transitivity in advanced Evaluator LLMs (with Qwen2.5-Max exhibiting 67.96%), as well as high entropy values (0.8095 for Qwen2.5-Max), reflecting low overall clarity of preferences. To address this issue, we designed a filtering strategy, ELSPR, to eliminate preference data that induces non-transitivity, retaining only consistent and transitive preference data for model fine-tuning. Experiments demonstrate that models fine-tuned with filtered data reduce non-transitivity by 13.78% (from 64.28% to 50.50%), decrease structural entropy by 0.0879 (from 0.8113 to 0.7234), and align more closely with human evaluators (human agreement rate improves by 0.6% and Spearman correlation increases by 0.01).
Abstract:Driving simulation plays a crucial role in developing reliable driving agents by providing controlled, evaluative environments. To enable meaningful assessments, a high-quality driving simulator must satisfy several key requirements: multi-modal sensing capabilities (e.g., camera and LiDAR) with realistic scene rendering to minimize observational discrepancies; closed-loop evaluation to support free-form trajectory behaviors; highly diverse traffic scenarios for thorough evaluation; multi-agent cooperation to capture interaction dynamics; and high computational efficiency to ensure affordability and scalability. However, existing simulators and benchmarks fail to comprehensively meet these fundamental criteria. To bridge this gap, this paper introduces RealEngine, a novel driving simulation framework that holistically integrates 3D scene reconstruction and novel view synthesis techniques to achieve realistic and flexible closed-loop simulation in the driving context. By leveraging real-world multi-modal sensor data, RealEngine reconstructs background scenes and foreground traffic participants separately, allowing for highly diverse and realistic traffic scenarios through flexible scene composition. This synergistic fusion of scene reconstruction and view synthesis enables photorealistic rendering across multiple sensor modalities, ensuring both perceptual fidelity and geometric accuracy. Building upon this environment, RealEngine supports three essential driving simulation categories: non-reactive simulation, safety testing, and multi-agent interaction, collectively forming a reliable and comprehensive benchmark for evaluating the real-world performance of driving agents.