Abstract:Eliciting reasoning has emerged as a powerful technique for improving the performance of large language models (LLMs) on complex tasks by inducing thinking. However, their effectiveness in realistic user-engaged agent scenarios remains unclear. In this paper, we conduct a comprehensive study on the effect of explicit thinking in user-engaged LLM agents. Our experiments span across seven models, three benchmarks, and two thinking instantiations, and we evaluate them through both a quantitative response taxonomy analysis and qualitative failure propagation case studies. Contrary to expectations, we find that mandatory thinking often backfires on agents in user-engaged settings, causing anomalous performance degradation across various LLMs. Our key finding reveals that thinking makes agents more ``introverted'' by shortening responses and reducing information disclosure to users, which weakens agent-user information exchange and leads to downstream task failures. Furthermore, we demonstrate that explicitly prompting for information disclosure reliably improves performance across diverse model families, suggesting that proactive transparency is a vital lever for agent optimization. Overall, our study suggests that information transparency awareness is a crucial yet underexplored perspective for the future design of reasoning agents in real-world scenarios. Our code is available at https://github.com/deeplearning-wisc/Thinking-Agent.
Abstract:As large language models (LLMs) continue to scale up, their performance on various downstream tasks has significantly improved. However, evaluating their capabilities has become increasingly expensive, as performing inference on a large number of benchmark samples incurs high computational costs. In this paper, we revisit the model-item performance matrix and show that it exhibits sparsity, that representative items can be selected as anchors, and that the task of efficient benchmarking can be formulated as a sparse optimization problem. Based on these insights, we propose SparseEval, a method that, for the first time, adopts gradient descent to optimize anchor weights and employs an iterative refinement strategy for anchor selection. We utilize the representation capacity of MLP to handle sparse optimization and propose the Anchor Importance Score and Candidate Importance Score to evaluate the value of each item for task-aware refinement. Extensive experiments demonstrate the low estimation error and high Kendall's~$τ$ of our method across a variety of benchmarks, showcasing its superior robustness and practicality in real-world scenarios. Code is available at {https://github.com/taolinzhang/SparseEval}.
Abstract:Continuous-time generative models, such as diffusion models, flow matching, and rectified flow, learn time-dependent vector fields but are typically trained with objectives that treat timesteps independently, leading to high estimator variance and inefficient sampling. Prior approaches mitigate this via explicit smoothness penalties, trajectory regularization, or modified probability paths and solvers. We introduce Temporal Pair Consistency (TPC), a lightweight variance-reduction principle that couples velocity predictions at paired timesteps along the same probability path, operating entirely at the estimator level without modifying the model architecture, probability path, or solver. We provide a theoretical analysis showing that TPC induces a quadratic, trajectory-coupled regularization that provably reduces gradient variance while preserving the underlying flow-matching objective. Instantiated within flow matching, TPC improves sample quality and efficiency across CIFAR-10 and ImageNet at multiple resolutions, achieving lower FID at identical or lower computational cost than prior methods, and extends seamlessly to modern SOTA-style pipelines with noise-augmented training, score-based denoising, and rectified flow.
Abstract:While large language model (LLM) multi-agent systems achieve superior reasoning performance through iterative debate, practical deployment is limited by their high computational cost and error propagation. This paper proposes AgentArk, a novel framework to distill multi-agent dynamics into the weights of a single model, effectively transforming explicit test-time interactions into implicit model capabilities. This equips a single agent with the intelligence of multi-agent systems while remaining computationally efficient. Specifically, we investigate three hierarchical distillation strategies across various models, tasks, scaling, and scenarios: reasoning-enhanced fine-tuning; trajectory-based augmentation; and process-aware distillation. By shifting the burden of computation from inference to training, the distilled models preserve the efficiency of one agent while exhibiting strong reasoning and self-correction performance of multiple agents. They further demonstrate enhanced robustness and generalization across diverse reasoning tasks. We hope this work can shed light on future research on efficient and robust multi-agent development. Our code is at https://github.com/AIFrontierLab/AgentArk.
Abstract:Unified multimodal models (UMMs) are emerging as strong foundation models that can do both generation and understanding tasks in a single architecture. However, they are typically trained in centralized settings where all training and downstream datasets are gathered in a central server, limiting the deployment in privacy-sensitive and geographically distributed scenarios. In this paper, we present FedUMM, a general federated learning framework for UMMs under non-IID multimodal data with low communication cost. Built on NVIDIA FLARE, FedUMM instantiates federation for a BLIP3o backbone via parameter-efficient fine-tuning: clients train lightweight LoRA adapters while freezing the foundation models, and the server aggregates only adapter updates. We evaluate on VQA v2 and the GenEval compositional generation benchmarks under Dirichlet-controlled heterogeneity with up to 16 clients. Results show slight degradation as client count and heterogeneity increase, while remaining competitive with centralized training. We further analyze computation--communication trade-offs and demonstrate that adapter-only federation reduces per-round communication by over an order of magnitude compared to full fine-tuning, enabling practical federated UMM training. This work provides empirical experience for future research on privacy-preserving federated unified multimodal models.
Abstract:Large Language Models (LLMs) offer a promising solution to complement traditional teaching and address global teacher shortages that affect hundreds of millions of children, but they fail to provide grade-appropriate responses for students at different educational levels. We introduce a framework for finetuning LLMs to generate age-appropriate educational content across six grade levels, from lower elementary to adult education. Our framework successfully adapts explanations to match students' comprehension capacities without sacrificing factual correctness. This approach integrates seven established readability metrics through a clustering method and builds a comprehensive dataset for grade-specific content generation. Evaluations across multiple datasets with 208 human participants demonstrate substantial improvements in grade-level alignment, achieving a 35.64 percentage point increase compared to prompt-based methods while maintaining response accuracy. AI-assisted learning tailored to different grade levels has the potential to advance educational engagement and equity.




Abstract:Sensor-based human activity recognition (HAR) mines activity patterns from the time-series sensory data. In realistic scenarios, variations across individuals, devices, environments, and time introduce significant distributional shifts for the same activities. Recent efforts attempt to solve this challenge by applying or adapting existing out-of-distribution (OOD) algorithms, but only in certain distribution shift scenarios (e.g., cross-device or cross-position), lacking comprehensive insights on the effectiveness of these algorithms. For instance, is OOD necessary to HAR? Which OOD algorithm performs the best? In this paper, we fill this gap by proposing HAROOD, a comprehensive benchmark for HAR in OOD settings. We define 4 OOD scenarios: cross-person, cross-position, cross-dataset, and cross-time, and build a testbed covering 6 datasets, 16 comparative methods (implemented with CNN-based and Transformer-based architectures), and two model selection protocols. Then, we conduct extensive experiments and present several findings for future research, e.g., no single method consistently outperforms others, highlighting substantial opportunity for advancement. Our codebase is highly modular and easy to extend for new datasets, algorithms, comparisons, and analysis, with the hope to facilitate the research in OOD-based HAR. Our implementation is released and can be found at https://github.com/AIFrontierLab/HAROOD.
Abstract:While computer vision and machine learning have made great progress, their robustness is still challenged by two key issues: data distribution shift and label noise. When domain generalization (DG) encounters noise, noisy labels further exacerbate the emergence of spurious features in deep layers, i.e. spurious feature enlargement, leading to a degradation in the performance of existing algorithms. This paper, starting from domain generalization, explores how to make existing methods rework when meeting noise. We find that the latent features inside the model have certain discriminative capabilities, and different latent features focus on different parts of the image. Based on these observations, we propose the Self-Ensemble Post Learning approach (SEPL) to diversify features which can be leveraged. Specifically, SEPL consists of two parts: feature probing training and prediction ensemble inference. It leverages intermediate feature representations within the model architecture, training multiple probing classifiers to fully exploit the capabilities of pre-trained models, while the final predictions are obtained through the integration of outputs from these diverse classification heads. Considering the presence of noisy labels, we employ semi-supervised algorithms to train probing classifiers. Given that different probing classifiers focus on different areas, we integrate their predictions using a crowdsourcing inference approach. Extensive experimental evaluations demonstrate that the proposed method not only enhances the robustness of existing methods but also exhibits significant potential for real-world applications with high flexibility.
Abstract:Large Language Models (LLMs) are reshaping unsupervised learning by offering an unprecedented ability to perform text clustering based on their deep semantic understanding. However, their direct application is fundamentally limited by a lack of stateful memory for iterative refinement and the difficulty of managing cluster granularity. As a result, existing methods often rely on complex pipelines with external modules, sacrificing a truly end-to-end approach. We introduce LLM-MemCluster, a novel framework that reconceptualizes clustering as a fully LLM-native task. It leverages a Dynamic Memory to instill state awareness and a Dual-Prompt Strategy to enable the model to reason about and determine the number of clusters. Evaluated on several benchmark datasets, our tuning-free framework significantly and consistently outperforms strong baselines. LLM-MemCluster presents an effective, interpretable, and truly end-to-end paradigm for LLM-based text clustering.
Abstract:Crowd localization plays a crucial role in visual scene understanding towards predicting each pedestrian location in a crowd, thus being applicable to various downstream tasks. However, existing approaches suffer from significant performance degradation due to discrepancies in head scale distributions (scale shift) between training and testing data, a challenge known as domain generalization (DG). This paper aims to comprehend the nature of scale shift within the context of domain generalization for crowd localization models. To this end, we address four critical questions: (i) How does scale shift influence crowd localization in a DG scenario? (ii) How can we quantify this influence? (iii) What causes this influence? (iv) How to mitigate the influence? Initially, we conduct a systematic examination of how crowd localization performance varies with different levels of scale shift. Then, we establish a benchmark, ScaleBench, and reproduce 20 advanced DG algorithms to quantify the influence. Through extensive experiments, we demonstrate the limitations of existing algorithms and underscore the importance and complexity of scale shift, a topic that remains insufficiently explored. To deepen our understanding, we provide a rigorous theoretical analysis on scale shift. Building on these insights, we further propose an effective algorithm called Causal Feature Decomposition and Anisotropic Processing (Catto) to mitigate the influence of scale shift in DG settings. Later, we also provide extensive analytical experiments, revealing four significant insights for future research. Our results emphasize the importance of this novel and applicable research direction, which we term Scale Shift Domain Generalization.