The Hong Kong University of Science and Technology
Abstract:Despite the success of recommender systems in alleviating information overload, fairness issues have raised concerns in recent years, potentially leading to unequal treatment for certain user groups. While efforts have been made to improve recommendation fairness, they often assume that users' sensitive attributes are available during model training. However, collecting sensitive information can be difficult, especially on platforms that involve no personal information disclosure. Therefore, we aim to improve recommendation fairness without any access to sensitive attributes. However, this is a non-trivial task because uncovering latent sensitive patterns from complicated user behaviors without explicit sensitive attributes can be difficult. Consequently, suboptimal estimates of sensitive distributions can hinder the fairness training process. To address these challenges, leveraging the remarkable reasoning abilities of Large Language Models (LLMs), we propose a novel LLM-enhanced framework for Fair recommendation withOut Sensitive Attributes (LLMFOSA). A Multi-Persona Sensitive Information Inference module employs LLMs with distinct personas that mimic diverse human perceptions to infer and distill sensitive information. Furthermore, a Confusion-Aware Sensitive Representation Learning module incorporates inference results and rationales to develop robust sensitive representations, considering the mislabeling confusion and collective consensus among agents. The model is then optimized by a formulated mutual information objective. Extensive experiments on two public datasets validate the effectiveness of LLMFOSA in improving fairness.
Abstract:Incorporating collaborative information (CI) effectively is crucial for leveraging LLMs in recommendation tasks. Existing approaches often encode CI using soft tokens or abstract identifiers, which introduces a semantic misalignment with the LLM's natural language pretraining and hampers knowledge integration. To address this, we propose expressing CI directly in natural language to better align with LLMs' semantic space. We achieve this by retrieving a curated set of the most relevant user behaviors in natural language form. However, identifying informative CI is challenging due to the complexity of similarity and utility assessment. To tackle this, we introduce a Self-assessing COllaborative REtrieval framework (SCORE) following the retrieve-rerank paradigm. First, a Collaborative Retriever (CAR) is developed to consider both collaborative patterns and semantic similarity. Then, a Self-assessing Reranker (SARE) leverages LLMs' own reasoning to assess and prioritize retrieved behaviors. Finally, the selected behaviors are prepended to the LLM prompt as natural-language CI to guide recommendation. Extensive experiments on two public datasets validate the effectiveness of SCORE in improving LLM-based recommendation.
Abstract:Data Assimilation (DA) plays a critical role in atmospheric science by reconstructing spatially continous estimates of the system state, which serves as initial conditions for scientific analysis. While recent advances in diffusion models have shown great potential for DA tasks, most existing approaches remain purely data-driven and often overlook the physical laws that govern complex atmospheric dynamics. As a result, they may yield physically inconsistent reconstructions that impair downstream applications. To overcome this limitation, we propose PhyDA, a physics-guided diffusion framework designed to ensure physical coherence in atmospheric data assimilation. PhyDA introduces two key components: (1) a Physically Regularized Diffusion Objective that integrates physical constraints into the training process by penalizing deviations from known physical laws expressed as partial differential equations, and (2) a Virtual Reconstruction Encoder that bridges observational sparsity for structured latent representations, further enhancing the model's ability to infer complete and physically coherent states. Experiments on the ERA5 reanalysis dataset demonstrate that PhyDA achieves superior accuracy and better physical plausibility compared to state-of-the-art baselines. Our results emphasize the importance of combining generative modeling with domain-specific physical knowledge and show that PhyDA offers a promising direction for improving real-world data assimilation systems.
Abstract:Tracking multiple objects in a continuous video stream is crucial for many computer vision tasks. It involves detecting and associating objects with their respective identities across successive frames. Despite significant progress made in multiple object tracking (MOT), recent studies have revealed the vulnerability of existing MOT methods to adversarial attacks. Nevertheless, all of these attacks belong to digital attacks that inject pixel-level noise into input images, and are therefore ineffective in physical scenarios. To fill this gap, we propose PapMOT, which can generate physical adversarial patches against MOT for both digital and physical scenarios. Besides attacking the detection mechanism, PapMOT also optimizes a printable patch that can be detected as new targets to mislead the identity association process. Moreover, we introduce a patch enhancement strategy to further degrade the temporal consistency of tracking results across video frames, resulting in more aggressive attacks. We further develop new evaluation metrics to assess the robustness of MOT against such attacks. Extensive evaluations on multiple datasets demonstrate that our PapMOT can successfully attack various architectures of MOT trackers in digital scenarios. We also validate the effectiveness of PapMOT for physical attacks by deploying printed adversarial patches in the real world.
Abstract:Knowledge distillation (KD) aims to transfer the knowledge of a more capable yet cumbersome teacher model to a lightweight student model. In recent years, relation-based KD methods have fallen behind, as their instance-matching counterparts dominate in performance. In this paper, we revive relational KD by identifying and tackling several key issues in relation-based methods, including their susceptibility to overfitting and spurious responses. Specifically, we transfer novelly constructed affinity graphs that compactly encapsulate a wealth of beneficial inter-sample, inter-class, and inter-view correlations by exploiting virtual views and relations as a new kind of knowledge. As a result, the student has access to richer guidance signals and stronger regularisation throughout the distillation process. To further mitigate the adverse impact of spurious responses, we prune the affinity graphs by dynamically detaching redundant and unreliable edges. Extensive experiments on CIFAR-100 and ImageNet datasets demonstrate the superior performance of the proposed virtual relation matching (VRM) method over a range of models, architectures, and set-ups. For instance, VRM for the first time hits 74.0% accuracy for ResNet50-to-MobileNetV2 distillation on ImageNet, and improves DeiT-T by 14.44% on CIFAR-100 with a ResNet56 teacher. Thorough analyses are also conducted to gauge the soundness, properties, and complexity of our designs. Code and models will be released.
Abstract:Generating synthetic datasets via large language models (LLMs) themselves has emerged as a promising approach to improve LLM performance. However, LLMs inherently reflect biases present in their training data, leading to a critical challenge: when these models generate synthetic data for training, they may propagate and amplify their inherent biases that can significantly impact model fairness and robustness on downstream tasks--a phenomenon we term bias inheritance. This work presents the first systematic investigation in understanding, analyzing, and mitigating bias inheritance. We study this problem by fine-tuning LLMs with a combined dataset consisting of original and LLM-augmented data, where bias ratio represents the proportion of augmented data. Through systematic experiments across 10 classification and generation tasks, we analyze how 6 different types of biases manifest at varying bias ratios. Our results reveal that bias inheritance has nuanced effects on downstream tasks, influencing both classification tasks and generation tasks differently. Then, our analysis identifies three key misalignment factors: misalignment of values, group data, and data distributions. Based on these insights, we propose three mitigation strategies: token-based, mask-based, and loss-based approaches. Experiments demonstrate that these strategies also work differently on various tasks and bias, indicating the substantial challenges to fully mitigate bias inheritance. We hope this work can provide valuable insights to the research of LLM data augmentation.
Abstract:In collaborative environments, a deep understanding of multi-human teaming dynamics is essential for optimizing performance. However, the relationship between individuals' behavioral and physiological markers and their combined influence on overall team performance remains poorly understood. To explore this, we designed a triadic human collaborative sensorimotor task in virtual reality (VR) and introduced a novel predictability metric to examine team dynamics and performance. Our findings reveal a strong connection between team performance and the predictability of a team member's future actions based on other team members' behavioral and physiological data. Contrary to conventional wisdom that high-performing teams are highly synchronized, our results suggest that physiological and behavioral synchronizations among team members have a limited correlation with team performance. These insights provide a new quantitative framework for understanding multi-human teaming, paving the way for deeper insights into team dynamics and performance.
Abstract:Knowledge distillation (KD) is an established paradigm for transferring privileged knowledge from a cumbersome model to a lightweight and efficient one. In recent years, logit-based KD methods are quickly catching up in performance with their feature-based counterparts. However, previous research has pointed out that logit-based methods are still fundamentally limited by two major issues in their training process, namely overconfident teacher and confirmation bias. Inspired by the success of cross-view learning in fields such as semi-supervised learning, in this work we introduce within-view and cross-view regularisations to standard logit-based distillation frameworks to combat the above cruxes. We also perform confidence-based soft label mining to improve the quality of distilling signals from the teacher, which further mitigates the confirmation bias problem. Despite its apparent simplicity, the proposed Consistency-Regularisation-based Logit Distillation (CRLD) significantly boosts student learning, setting new state-of-the-art results on the standard CIFAR-100, Tiny-ImageNet, and ImageNet datasets across a diversity of teacher and student architectures, whilst introducing no extra network parameters. Orthogonal to on-going logit-based distillation research, our method enjoys excellent generalisation properties and, without bells and whistles, boosts the performance of various existing approaches by considerable margins.
Abstract:In survival analysis, subjects often face competing risks; for example, individuals with cancer may also suffer from heart disease or other illnesses, which can jointly influence the prognosis of risks and censoring. Traditional survival analysis methods often treat competing risks as independent and fail to accommodate the dependencies between different conditions. In this paper, we introduce HACSurv, a survival analysis method that learns Hierarchical Archimedean Copulas structures and cause-specific survival functions from data with competing risks. HACSurv employs a flexible dependency structure using hierarchical Archimedean copulas to represent the relationships between competing risks and censoring. By capturing the dependencies between risks and censoring, HACSurv achieves better survival predictions and offers insights into risk interactions. Experiments on synthetic datasets demonstrate that our method can accurately identify the complex dependency structure and precisely predict survival distributions, whereas the compared methods exhibit significant deviations between their predictions and the true distributions. Experiments on multiple real-world datasets also demonstrate that our method achieves better survival prediction compared to previous state-of-the-art methods.
Abstract:Real estate appraisal is important for a variety of endeavors such as real estate deals, investment analysis, and real property taxation. Recently, deep learning has shown great promise for real estate appraisal by harnessing substantial online transaction data from web platforms. Nonetheless, deep learning is data-hungry, and thus it may not be trivially applicable to enormous small cities with limited data. To this end, we propose Meta-Transfer Learning Empowered Temporal Graph Networks (MetaTransfer) to transfer valuable knowledge from multiple data-rich metropolises to the data-scarce city to improve valuation performance. Specifically, by modeling the ever-growing real estate transactions with associated residential communities as a temporal event heterogeneous graph, we first design an Event-Triggered Temporal Graph Network to model the irregular spatiotemporal correlations between evolving real estate transactions. Besides, we formulate the city-wide real estate appraisal as a multi-task dynamic graph link label prediction problem, where the valuation of each community in a city is regarded as an individual task. A Hypernetwork-Based Multi-Task Learning module is proposed to simultaneously facilitate intra-city knowledge sharing between multiple communities and task-specific parameters generation to accommodate the community-wise real estate price distribution. Furthermore, we propose a Tri-Level Optimization Based Meta- Learning framework to adaptively re-weight training transaction instances from multiple source cities to mitigate negative transfer, and thus improve the cross-city knowledge transfer effectiveness. Finally, extensive experiments based on five real-world datasets demonstrate the significant superiority of MetaTransfer compared with eleven baseline algorithms.