Abstract:Visual speech recognition is a technique to identify spoken content in silent speech videos, which has raised significant attention in recent years. Advancements in data-driven deep learning methods have significantly improved both the speed and accuracy of recognition. However, these deep learning methods can be effected by visual disturbances, such as lightning conditions, skin texture and other user-specific features. Data-driven approaches could reduce the performance degradation caused by these visual disturbances using models pretrained on large-scale datasets. But these methods often require large amounts of training data and computational resources, making them costly. To reduce the influence of user-specific features and enhance performance with limited data, this paper proposed a landmark guided visual feature extractor. Facial landmarks are used as auxiliary information to aid in training the visual feature extractor. A spatio-temporal multi-graph convolutional network is designed to fully exploit the spatial locations and spatio-temporal features of facial landmarks. Additionally, a multi-level lip dynamic fusion framework is introduced to combine the spatio-temporal features of the landmarks with the visual features extracted from the raw video frames. Experimental results show that this approach performs well with limited data and also improves the model's accuracy on unseen speakers.
Abstract:Recent advances in generative models, particularly diffusion and auto-regressive models, have revolutionized fields like computer vision and natural language processing. However, their application to structure-based drug design (SBDD) remains limited due to critical data constraints. To address the limitation of training data for models targeting SBDD tasks, we propose an evolutionary framework named MEVO, which bridges the gap between billion-scale small molecule dataset and the scarce protein-ligand complex dataset, and effectively increase the abundance of training data for generative SBDD models. MEVO is composed of three key components: a high-fidelity VQ-VAE for molecule representation in latent space, a diffusion model for pharmacophore-guided molecule generation, and a pocket-aware evolutionary strategy for molecule optimization with physics-based scoring function. This framework efficiently generate high-affinity binders for various protein targets, validated with predicted binding affinities using free energy perturbation (FEP) methods. In addition, we showcase the capability of MEVO in designing potent inhibitors to KRAS$^{\textrm{G12D}}$, a challenging target in cancer therapeutics, with similar affinity to the known highly active inhibitor evaluated by FEP calculations. With high versatility and generalizability, MEVO offers an effective and data-efficient model for various tasks in structure-based ligand design.
Abstract:Table structure recognition (TSR) and optical character recognition (OCR) play crucial roles in extracting structured data from tables in scientific documents. However, existing extraction frameworks built on top of TSR and OCR methods often fail to quantify the uncertainties of extracted results. To obtain highly accurate data for scientific domains, all extracted data must be manually verified, which can be time-consuming and labor-intensive. We propose a framework that performs uncertainty-aware data extraction for complex scientific tables, built on conformal prediction, a model-agnostic method for uncertainty quantification (UQ). We explored various uncertainty scoring methods to aggregate the uncertainties introduced by TSR and OCR. We rigorously evaluated the framework using a standard benchmark and an in-house dataset consisting of complex scientific tables in six scientific domains. The results demonstrate the effectiveness of using UQ for extraction error detection, and by manually verifying only 47\% of extraction results, the data quality can be improved by 30\%. Our work quantitatively demonstrates the role of UQ with the potential of improving the efficiency in the human-machine cooperation process to obtain scientifically usable data from complex tables in scientific documents. All code and data are available on GitHub at https://github.com/lamps-lab/TSR-OCR-UQ/tree/main.
Abstract:Graph Neural Networks (GNNs) often struggle in preserving high-frequency components of nodal signals when dealing with directed graphs. Such components are crucial for modeling flow dynamics, without which a traditional GNN tends to treat a graph with forward and reverse topologies equal.To make GNNs sensitive to those high-frequency components thereby being capable to capture detailed topological differences, this paper proposes a novel framework that combines 1) explicit difference matrices that model directional gradients and 2) implicit physical constraints that enforce messages passing within GNNs to be consistent with natural laws. Evaluations on two real-world directed graph data, namely, water flux network and urban traffic flow network, demonstrate the effectiveness of our proposal.
Abstract:Large Language Model-based Multi-Agent Systems (MASs) have emerged as a powerful paradigm for tackling complex tasks through collaborative intelligence. Nevertheless, the question of how agents should be structurally organized for optimal cooperation remains largely unexplored. In this position paper, we aim to gently redirect the focus of the MAS research community toward this critical dimension: develop topology-aware MASs for specific tasks. Specifically, the system consists of three core components - agents, communication links, and communication patterns - that collectively shape its coordination performance and efficiency. To this end, we introduce a systematic, three-stage framework: agent selection, structure profiling, and topology synthesis. Each stage would trigger new research opportunities in areas such as language models, reinforcement learning, graph learning, and generative modeling; together, they could unleash the full potential of MASs in complicated real-world applications. Then, we discuss the potential challenges and opportunities in the evaluation of multiple systems. We hope our perspective and framework can offer critical new insights in the era of agentic AI.
Abstract:Foundation models have emerged as a powerful paradigm in computational pathology (CPath), enabling scalable and generalizable analysis of histopathological images. While early developments centered on uni-modal models trained solely on visual data, recent advances have highlighted the promise of multi-modal foundation models that integrate heterogeneous data sources such as textual reports, structured domain knowledge, and molecular profiles. In this survey, we provide a comprehensive and up-to-date review of multi-modal foundation models in CPath, with a particular focus on models built upon hematoxylin and eosin (H&E) stained whole slide images (WSIs) and tile-level representations. We categorize 32 state-of-the-art multi-modal foundation models into three major paradigms: vision-language, vision-knowledge graph, and vision-gene expression. We further divide vision-language models into non-LLM-based and LLM-based approaches. Additionally, we analyze 28 available multi-modal datasets tailored for pathology, grouped into image-text pairs, instruction datasets, and image-other modality pairs. Our survey also presents a taxonomy of downstream tasks, highlights training and evaluation strategies, and identifies key challenges and future directions. We aim for this survey to serve as a valuable resource for researchers and practitioners working at the intersection of pathology and AI.
Abstract:This paper introduces a novel approach to Visual Forced Alignment (VFA), aiming to accurately synchronize utterances with corresponding lip movements, without relying on audio cues. We propose a novel VFA approach that integrates a local context-aware feature extractor and employs multi-task learning to refine both global and local context features, enhancing sensitivity to subtle lip movements for precise word-level and phoneme-level alignment. Incorporating the improved Viterbi algorithm for post-processing, our method significantly reduces misalignments. Experimental results show our approach outperforms existing methods, achieving a 6% accuracy improvement at the word-level and 27% improvement at the phoneme-level in LRS2 dataset. These improvements offer new potential for applications in automatically subtitling TV shows or user-generated content platforms like TikTok and YouTube Shorts.
Abstract:Knowledge Graph (KG)-augmented Large Language Models (LLMs) have recently propelled significant advances in complex reasoning tasks, thanks to their broad domain knowledge and contextual awareness. Unfortunately, current methods often assume KGs to be complete, which is impractical given the inherent limitations of KG construction and the potential loss of contextual cues when converting unstructured text into entity-relation triples. In response, this paper proposes the Triple Context Restoration and Query-driven Feedback (TCR-QF) framework, which reconstructs the textual context underlying each triple to mitigate information loss, while dynamically refining the KG structure by iteratively incorporating query-relevant missing knowledge. Experiments on five benchmark question-answering datasets substantiate the effectiveness of TCR-QF in KG and LLM integration, where itachieves a 29.1% improvement in Exact Match and a 15.5% improvement in F1 over its state-of-the-art GraphRAG competitors.
Abstract:Recent research shows that emotions can enhance users' cognition and influence information communication. While research on visual emotion analysis is extensive, limited work has been done on helping users generate emotionally rich image content. Existing work on emotional image generation relies on discrete emotion categories, making it challenging to capture complex and subtle emotional nuances accurately. Additionally, these methods struggle to control the specific content of generated images based on text prompts. In this work, we introduce the new task of continuous emotional image content generation (C-EICG) and present EmotiCrafter, an emotional image generation model that generates images based on text prompts and Valence-Arousal values. Specifically, we propose a novel emotion-embedding mapping network that embeds Valence-Arousal values into textual features, enabling the capture of specific emotions in alignment with intended input prompts. Additionally, we introduce a loss function to enhance emotion expression. The experimental results show that our method effectively generates images representing specific emotions with the desired content and outperforms existing techniques.
Abstract:With the continuous improvement of people's living standards and fast-paced working conditions, pre-made dishes are becoming increasingly popular among families and restaurants due to their advantages of time-saving, convenience, variety, cost-effectiveness, standard quality, etc. Object detection is a key technology for selecting ingredients and evaluating the quality of dishes in the pre-made dishes industry. To date, many object detection approaches have been proposed. However, accurate object detection of pre-made dishes is extremely difficult because of overlapping occlusion of ingredients, similarity of ingredients, and insufficient light in the processing environment. As a result, the recognition scene is relatively complex and thus leads to poor object detection by a single model. To address this issue, this paper proposes a Differential Evolution Integrated Hybrid Deep Learning (DEIHDL) model. The main idea of DEIHDL is three-fold: 1) three YOLO-based and transformer-based base models are developed respectively to increase diversity for detecting objects of pre-made dishes, 2) the three base models are integrated by differential evolution optimized self-adjusting weights, and 3) weighted boxes fusion strategy is employed to score the confidence of the three base models during the integration. As such, DEIHDL possesses the multi-performance originating from the three base models to achieve accurate object detection in complex pre-made dish scenes. Extensive experiments on real datasets demonstrate that the proposed DEIHDL model significantly outperforms the base models in detecting objects of pre-made dishes.