Abstract:Large language models (LLMs) are increasingly used for tasks that require complex reasoning. Most benchmarks focus on final outcomes but overlook the intermediate reasoning steps - such as planning, revision, and decision making under resource constraints. We argue that measuring these internal processes is essential for understanding model behavior and improving reliability. We propose using strategic games as a natural evaluation environment: closed, rule-based systems with clear states, limited resources, and automatic feedback. We introduce a framework that evaluates LLMs along three core dimensions: planning, revision, and resource-constrained decision making. To operationalize this, we define metrics beyond win rate, including overcorrection risk rate, correction success rate, improvement slope, and over-budget ratio. In 4320 adversarial rounds across 12 leading models, ChatGPT-o3-mini achieves the top composite score, with a win rate of 74.7 percent, a correction success rate of 78.6 percent, and an improvement slope of 0.041. By contrast, Qwen-Plus, despite an overcorrection risk rate of 81.6 percent, wins only 25.6 percent of its matches - primarily due to excessive resource use. We also observe a negative correlation between overcorrection risk rate and correction success rate (Pearson r = -0.51, p = 0.093), suggesting that more frequent edits do not always improve outcomes. Our findings highlight the value of assessing not only what LLMs decide but how they arrive at those decisions
Abstract:We study a multi-source wireless power transfer (WPT) enabled network supporting multi-sensor transmissions. Activated by energy harvesting (EH) from multiple WPT sources, sensors transmit short packets to a destination with finite blocklength (FBL) codes. This work for the first time characterizes the FBL reliability for such multi-source WPT enabled network and provides reliability-oriented resource allocation designs, while a practical nonlinear EH model is considered. For scenario with a fixed frame structure, we maximize the FBL reliability via optimally allocating the transmit power among multi-source. In particular, we first investigate the relationship between the FBL reliability and multiple WPT source power, based on which a power allocation problem is formulated. To solve the formulated non-convex problem, we introduce auxiliary variables and apply successive convex approximation (SCA) technique to the non-convex component. Consequently, a sub-optimal solution can be obtained. Moreover, we extend our design into a dynamic frame structure scenario, i.e., the blocklength allocated for WPT phase and short-packet transmission phase are adjustable, which introduces more flexibility and new challenges to the system design. We provide a joint power and blocklength allocation design to minimize the system overall error probability under the total power and blocklength constraints. To address the high-dimensional optimization problem, auxiliary variables introduction, multiple variable substitutions and SCA technique utilization are exploited to reformulate and efficiently solve the problem. Finally, through numerical results, we validate our analytical model and evaluate the system performance, where a set of guidelines for practical system design are concluded.