Abstract:For the purpose of efficient and cost-effective large-scale data labeling, crowdsourcing is increasingly being utilized. To guarantee the quality of data labeling, multiple annotations need to be collected for each data sample, and truth inference algorithms have been developed to accurately infer the true labels. Despite previous studies having released public datasets to evaluate the efficacy of truth inference algorithms, these have typically focused on a single type of crowdsourcing task and neglected the temporal information associated with workers' annotation activities. These limitations significantly restrict the practical applicability of these algorithms, particularly in the context of long-term and online truth inference. In this paper, we introduce a substantial crowdsourcing annotation dataset collected from a real-world crowdsourcing platform. This dataset comprises approximately two thousand workers, one million tasks, and six million annotations. The data was gathered over a period of approximately six months from various types of tasks, and the timestamps of each annotation were preserved. We analyze the characteristics of the dataset from multiple perspectives and evaluate the effectiveness of several representative truth inference algorithms on this dataset. We anticipate that this dataset will stimulate future research on tracking workers' abilities over time in relation to different types of tasks, as well as enhancing online truth inference.
Abstract:Reinforcement Learning (RL) has demonstrated substantial potential across diverse fields, yet understanding its decision-making process, especially in real-world scenarios where rationality and safety are paramount, is an ongoing challenge. This paper delves in to Explainable RL (XRL), a subfield of Explainable AI (XAI) aimed at unravelling the complexities of RL models. Our focus rests on state-explaining techniques, a crucial subset within XRL methods, as they reveal the underlying factors influencing an agent's actions at any given time. Despite their significant role, the lack of a unified evaluation framework hinders assessment of their accuracy and effectiveness. To address this, we introduce XRL-Bench, a unified standardized benchmark tailored for the evaluation and comparison of XRL methods, encompassing three main modules: standard RL environments, explainers based on state importance, and standard evaluators. XRL-Bench supports both tabular and image data for state explanation. We also propose TabularSHAP, an innovative and competitive XRL method. We demonstrate the practical utility of TabularSHAP in real-world online gaming services and offer an open-source benchmark platform for the straightforward implementation and evaluation of XRL methods. Our contributions facilitate the continued progression of XRL technology.
Abstract:Collecting high-quality labeled data for model training is notoriously time-consuming and labor-intensive for various NLP tasks. While copious solutions, such as active learning for small language models (SLMs) and prevalent in-context learning in the era of large language models (LLMs), have been proposed and alleviate the labeling burden to some extent, their performances are still subject to human intervention. It is still underexplored how to reduce the annotation cost in the LLMs era. To bridge this, we revolutionize traditional active learning and propose an innovative collaborative learning framework FreeAL to interactively distill and filter the task-specific knowledge from LLMs. During collaborative training, an LLM serves as an active annotator inculcating its coarse-grained knowledge, while a downstream SLM is incurred as a student to filter out high-quality in-context samples to feedback LLM for the subsequent label refinery. Extensive experiments on eight benchmark datasets demonstrate that FreeAL largely enhances the zero-shot performances for both SLM and LLM without any human supervision. The code is available at https://github.com/Justherozen/FreeAL .
Abstract:Relying on crowdsourced workers, data crowdsourcing platforms are able to efficiently provide vast amounts of labeled data. Due to the variability in the annotation quality of crowd workers, modern techniques resort to redundant annotations and subsequent label aggregation to infer true labels. However, these methods require model updating during the inference, posing challenges in real-world implementation. Meanwhile, in recent years, many data labeling tasks have begun to require skilled and experienced annotators, leading to an increasing demand for long-term annotators. These annotators could leave substantial historical annotation records on the crowdsourcing platforms, which can benefit label aggregation, but are ignored by previous works. Hereby, in this paper, we propose a novel label aggregation technique, which does not need any model updating during inference and can extensively explore the historical annotation records. We call it SuperLA, a Supervised Label Aggregation method. Inside this model, we design three types of input features and a straightforward neural network structure to merge all the information together and subsequently produce aggregated labels. Based on comparison experiments conducted on 22 public datasets and 11 baseline methods, we find that SuperLA not only outperforms all those baselines in inference performance but also offers significant advantages in terms of efficiency.
Abstract:Semi-supervised learning (SSL) has been a fundamental challenge in machine learning for decades. The primary family of SSL algorithms, known as pseudo-labeling, involves assigning pseudo-labels to confident unlabeled instances and incorporating them into the training set. Therefore, the selection criteria of confident instances are crucial to the success of SSL. Recently, there has been growing interest in the development of SSL methods that use dynamic or adaptive thresholds. Yet, these methods typically apply the same threshold to all samples, or use class-dependent thresholds for instances belonging to a certain class, while neglecting instance-level information. In this paper, we propose the study of instance-dependent thresholds, which has the highest degree of freedom compared with existing methods. Specifically, we devise a novel instance-dependent threshold function for all unlabeled instances by utilizing their instance-level ambiguity and the instance-dependent error rates of pseudo-labels, so instances that are more likely to have incorrect pseudo-labels will have higher thresholds. Furthermore, we demonstrate that our instance-dependent threshold function provides a bounded probabilistic guarantee for the correctness of the pseudo-labels it assigns.
Abstract:Although the pre-training followed by fine-tuning paradigm is used extensively in many fields, there is still some controversy surrounding the impact of pre-training on the fine-tuning process. Currently, experimental findings based on text and image data lack consensus. To delve deeper into the unsupervised pre-training followed by fine-tuning paradigm, we have extended previous research to a new modality: time series. In this study, we conducted a thorough examination of 150 classification datasets derived from the Univariate Time Series (UTS) and Multivariate Time Series (MTS) benchmarks. Our analysis reveals several key conclusions. (i) Pre-training can only help improve the optimization process for models that fit the data poorly, rather than those that fit the data well. (ii) Pre-training does not exhibit the effect of regularization when given sufficient training time. (iii) Pre-training can only speed up convergence if the model has sufficient ability to fit the data. (iv) Adding more pre-training data does not improve generalization, but it can strengthen the advantage of pre-training on the original data volume, such as faster convergence. (v) While both the pre-training task and the model structure determine the effectiveness of the paradigm on a given dataset, the model structure plays a more significant role.
Abstract:We investigate the problem of learning with noisy labels in real-world annotation scenarios, where noise can be categorized into two types: factual noise and ambiguity noise. To better distinguish these noise types and utilize their semantics, we propose a novel sample selection-based approach for noisy label learning, called Proto-semi. Proto-semi initially divides all samples into the confident and unconfident datasets via warm-up. By leveraging the confident dataset, prototype vectors are constructed to capture class characteristics. Subsequently, the distances between the unconfident samples and the prototype vectors are calculated to facilitate noise classification. Based on these distances, the labels are either corrected or retained, resulting in the refinement of the confident and unconfident datasets. Finally, we introduce a semi-supervised learning method to enhance training. Empirical evaluations on a real-world annotated dataset substantiate the robustness of Proto-semi in handling the problem of learning from noisy labels. Meanwhile, the prototype-based repartitioning strategy is shown to be effective in mitigating the adverse impact of label noise. Our code and data are available at https://github.com/fuxiAIlab/ProtoSemi.
Abstract:Sequential recommender systems aim to predict users' next interested item given their historical interactions. However, a long-standing issue is how to distinguish between users' long/short-term interests, which may be heterogeneous and contribute differently to the next recommendation. Existing approaches usually set pre-defined short-term interest length by exhaustive search or empirical experience, which is either highly inefficient or yields subpar results. The recent advanced transformer-based models can achieve state-of-the-art performances despite the aforementioned issue, but they have a quadratic computational complexity to the length of the input sequence. To this end, this paper proposes a novel sequential recommender system, AutoMLP, aiming for better modeling users' long/short-term interests from their historical interactions. In addition, we design an automated and adaptive search algorithm for preferable short-term interest length via end-to-end optimization. Through extensive experiments, we show that AutoMLP has competitive performance against state-of-the-art methods, while maintaining linear computational complexity.
Abstract:Real-world cooperation often requires intensive coordination among agents simultaneously. This task has been extensively studied within the framework of cooperative multi-agent reinforcement learning (MARL), and value decomposition methods are among those cutting-edge solutions. However, traditional methods that learn the value function as a monotonic mixing of per-agent utilities cannot solve the tasks with non-monotonic returns. This hinders their application in generic scenarios. Recent methods tackle this problem from the perspective of implicit credit assignment by learning value functions with complete expressiveness or using additional structures to improve cooperation. However, they are either difficult to learn due to large joint action spaces or insufficient to capture the complicated interactions among agents which are essential to solving tasks with non-monotonic returns. To address these problems, we propose a novel explicit credit assignment method to address the non-monotonic problem. Our method, Adaptive Value decomposition with Greedy Marginal contribution (AVGM), is based on an adaptive value decomposition that learns the cooperative value of a group of dynamically changing agents. We first illustrate that the proposed value decomposition can consider the complicated interactions among agents and is feasible to learn in large-scale scenarios. Then, our method uses a greedy marginal contribution computed from the value decomposition as an individual credit to incentivize agents to learn the optimal cooperative policy. We further extend the module with an action encoder to guarantee the linear time complexity for computing the greedy marginal contribution. Experimental results demonstrate that our method achieves significant performance improvements in several non-monotonic domains.
Abstract:Determining causal effects of temporal multi-intervention assists decision-making. Restricted by time-varying bias, selection bias, and interactions of multiple interventions, the disentanglement and estimation of multiple treatment effects from individual temporal data is still rare. To tackle these challenges, we propose a comprehensive framework of temporal counterfactual forecasting from an individual multiple treatment perspective (TCFimt). TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection and time-varying bias and designs a contrastive learning-based block to decouple a mixed treatment effect into separated main treatment effects and causal interactions which further improves estimation accuracy. Through implementing experiments on two real-world datasets from distinct fields, the proposed method shows satisfactory performance in predicting future outcomes with specific treatments and in choosing optimal treatment type and timing than state-of-the-art methods.