Alert button
Picture for Jiang Bian

Jiang Bian

Alert button

GAIA: Zero-shot Talking Avatar Generation

Nov 26, 2023
Tianyu He, Junliang Guo, Runyi Yu, Yuchi Wang, Jialiang Zhu, Kaikai An, Leyi Li, Xu Tan, Chunyu Wang, Han Hu, HsiangTao Wu, Sheng Zhao, Jiang Bian

Zero-shot talking avatar generation aims at synthesizing natural talking videos from speech and a single portrait image. Previous methods have relied on domain-specific heuristics such as warping-based motion representation and 3D Morphable Models, which limit the naturalness and diversity of the generated avatars. In this work, we introduce GAIA (Generative AI for Avatar), which eliminates the domain priors in talking avatar generation. In light of the observation that the speech only drives the motion of the avatar while the appearance of the avatar and the background typically remain the same throughout the entire video, we divide our approach into two stages: 1) disentangling each frame into motion and appearance representations; 2) generating motion sequences conditioned on the speech and reference portrait image. We collect a large-scale high-quality talking avatar dataset and train the model on it with different scales (up to 2B parameters). Experimental results verify the superiority, scalability, and flexibility of GAIA as 1) the resulting model beats previous baseline models in terms of naturalness, diversity, lip-sync quality, and visual quality; 2) the framework is scalable since larger models yield better results; 3) it is general and enables different applications like controllable talking avatar generation and text-instructed avatar generation.

* Project page: https://microsoft.github.io/GAIA/ 
Viaarxiv icon

On the Generalization Properties of Diffusion Models

Nov 14, 2023
Puheng Li, Zhong Li, Huishuai Zhang, Jiang Bian

Diffusion models are a class of generative models that serve to establish a stochastic transport map between an empirically observed, yet unknown, target distribution and a known prior. Despite their remarkable success in real-world applications, a theoretical understanding of their generalization capabilities remains underdeveloped. This work embarks on a comprehensive theoretical exploration of the generalization attributes of diffusion models. We establish theoretical estimates of the generalization gap that evolves in tandem with the training dynamics of score-based diffusion models, suggesting a polynomially small generalization error ($O(n^{-2/5}+m^{-4/5})$) on both the sample size $n$ and the model capacity $m$, evading the curse of dimensionality (i.e., not exponentially large in the data dimension) when early-stopped. Furthermore, we extend our quantitative analysis to a data-dependent scenario, wherein target distributions are portrayed as a succession of densities with progressively increasing distances between modes. This precisely elucidates the adverse effect of "modes shift" in ground truths on the model generalization. Moreover, these estimates are not solely theoretical constructs but have also been confirmed through numerical simulations. Our findings contribute to the rigorous understanding of diffusion models' generalization properties and provide insights that may guide practical applications.

* 42 pages, 11 figures 
Viaarxiv icon

MusicAgent: An AI Agent for Music Understanding and Generation with Large Language Models

Oct 25, 2023
Dingyao Yu, Kaitao Song, Peiling Lu, Tianyu He, Xu Tan, Wei Ye, Shikun Zhang, Jiang Bian

Figure 1 for MusicAgent: An AI Agent for Music Understanding and Generation with Large Language Models
Figure 2 for MusicAgent: An AI Agent for Music Understanding and Generation with Large Language Models
Figure 3 for MusicAgent: An AI Agent for Music Understanding and Generation with Large Language Models
Figure 4 for MusicAgent: An AI Agent for Music Understanding and Generation with Large Language Models

AI-empowered music processing is a diverse field that encompasses dozens of tasks, ranging from generation tasks (e.g., timbre synthesis) to comprehension tasks (e.g., music classification). For developers and amateurs, it is very difficult to grasp all of these task to satisfy their requirements in music processing, especially considering the huge differences in the representations of music data and the model applicability across platforms among various tasks. Consequently, it is necessary to build a system to organize and integrate these tasks, and thus help practitioners to automatically analyze their demand and call suitable tools as solutions to fulfill their requirements. Inspired by the recent success of large language models (LLMs) in task automation, we develop a system, named MusicAgent, which integrates numerous music-related tools and an autonomous workflow to address user requirements. More specifically, we build 1) toolset that collects tools from diverse sources, including Hugging Face, GitHub, and Web API, etc. 2) an autonomous workflow empowered by LLMs (e.g., ChatGPT) to organize these tools and automatically decompose user requests into multiple sub-tasks and invoke corresponding music tools. The primary goal of this system is to free users from the intricacies of AI-music tools, enabling them to concentrate on the creative aspect. By granting users the freedom to effortlessly combine tools, the system offers a seamless and enriching music experience.

Viaarxiv icon

BatteryML:An Open-source platform for Machine Learning on Battery Degradation

Oct 23, 2023
Han Zhang, Xiaofan Gui, Shun Zheng, Ziheng Lu, Yuqi Li, Jiang Bian

Battery degradation remains a pivotal concern in the energy storage domain, with machine learning emerging as a potent tool to drive forward insights and solutions. However, this intersection of electrochemical science and machine learning poses complex challenges. Machine learning experts often grapple with the intricacies of battery science, while battery researchers face hurdles in adapting intricate models tailored to specific datasets. Beyond this, a cohesive standard for battery degradation modeling, inclusive of data formats and evaluative benchmarks, is conspicuously absent. Recognizing these impediments, we present BatteryML - a one-step, all-encompass, and open-source platform designed to unify data preprocessing, feature extraction, and the implementation of both traditional and state-of-the-art models. This streamlined approach promises to enhance the practicality and efficiency of research applications. BatteryML seeks to fill this void, fostering an environment where experts from diverse specializations can collaboratively contribute, thus elevating the collective understanding and advancement of battery research.The code for our project is publicly available on GitHub at https://github.com/microsoft/BatteryML.

Viaarxiv icon

Towards Foundation Models for Learning on Tabular Data

Oct 22, 2023
Han Zhang, Xumeng Wen, Shun Zheng, Wei Xu, Jiang Bian

Figure 1 for Towards Foundation Models for Learning on Tabular Data
Figure 2 for Towards Foundation Models for Learning on Tabular Data
Figure 3 for Towards Foundation Models for Learning on Tabular Data
Figure 4 for Towards Foundation Models for Learning on Tabular Data

Learning on tabular data underpins numerous real-world applications. Despite considerable efforts in developing effective learning models for tabular data, current transferable tabular models remain in their infancy, limited by either the lack of support for direct instruction following in new tasks or the neglect of acquiring foundational knowledge and capabilities from diverse tabular datasets. In this paper, we propose Tabular Foundation Models (TabFMs) to overcome these limitations. TabFMs harness the potential of generative tabular learning, employing a pre-trained large language model (LLM) as the base model and fine-tuning it using purpose-designed objectives on an extensive range of tabular datasets. This approach endows TabFMs with a profound understanding and universal capabilities essential for learning on tabular data. Our evaluations underscore TabFM's effectiveness: not only does it significantly excel in instruction-following tasks like zero-shot and in-context inference, but it also showcases performance that approaches, and in instances, even transcends, the renowned yet mysterious closed-source LLMs like GPT-4. Furthermore, when fine-tuning with scarce data, our model achieves remarkable efficiency and maintains competitive performance with abundant training data. Finally, while our results are promising, we also delve into TabFM's limitations and potential opportunities, aiming to stimulate and expedite future research on developing more potent TabFMs.

Viaarxiv icon

Leveraging Large Language Model for Automatic Evolving of Industrial Data-Centric R&D Cycle

Oct 17, 2023
Xu Yang, Xiao Yang, Weiqing Liu, Jinhui Li, Peng Yu, Zeqi Ye, Jiang Bian

In the wake of relentless digital transformation, data-driven solutions are emerging as powerful tools to address multifarious industrial tasks such as forecasting, anomaly detection, planning, and even complex decision-making. Although data-centric R&D has been pivotal in harnessing these solutions, it often comes with significant costs in terms of human, computational, and time resources. This paper delves into the potential of large language models (LLMs) to expedite the evolution cycle of data-centric R&D. Assessing the foundational elements of data-centric R&D, including heterogeneous task-related data, multi-facet domain knowledge, and diverse computing-functional tools, we explore how well LLMs can understand domain-specific requirements, generate professional ideas, utilize domain-specific tools to conduct experiments, interpret results, and incorporate knowledge from past endeavors to tackle new challenges. We take quantitative investment research as a typical example of industrial data-centric R&D scenario and verified our proposed framework upon our full-stack open-sourced quantitative research platform Qlib and obtained promising results which shed light on our vision of automatic evolving of industrial data-centric R&D cycle.

* 29 pages, 11 figures 
Viaarxiv icon

On the Impact of Cross-Domain Data on German Language Models

Oct 13, 2023
Amin Dada, Aokun Chen, Cheng Peng, Kaleb E Smith, Ahmad Idrissi-Yaghir, Constantin Marc Seibold, Jianning Li, Lars Heiliger, Xi Yang, Christoph M. Friedrich, Daniel Truhn, Jan Egger, Jiang Bian, Jens Kleesiek, Yonghui Wu

Figure 1 for On the Impact of Cross-Domain Data on German Language Models
Figure 2 for On the Impact of Cross-Domain Data on German Language Models
Figure 3 for On the Impact of Cross-Domain Data on German Language Models
Figure 4 for On the Impact of Cross-Domain Data on German Language Models

Traditionally, large language models have been either trained on general web crawls or domain-specific data. However, recent successes of generative large language models, have shed light on the benefits of cross-domain datasets. To examine the significance of prioritizing data diversity over quality, we present a German dataset comprising texts from five domains, along with another dataset aimed at containing high-quality data. Through training a series of models ranging between 122M and 750M parameters on both datasets, we conduct a comprehensive benchmark on multiple downstream tasks. Our findings demonstrate that the models trained on the cross-domain dataset outperform those trained on quality data alone, leading to improvements up to $4.45\%$ over the previous state-of-the-art. The models are available at https://huggingface.co/ikim-uk-essen

* 13 pages, 1 figure, accepted at Findings of the Association for Computational Linguistics: EMNLP 2023 
Viaarxiv icon

NuTime: Numerically Multi-Scaled Embedding for Large-Scale Time Series Pretraining

Oct 12, 2023
Chenguo Lin, Xumeng Wen, Wei Cao, Congrui Huang, Jiang Bian, Stephen Lin, Zhirong Wu

Figure 1 for NuTime: Numerically Multi-Scaled Embedding for Large-Scale Time Series Pretraining
Figure 2 for NuTime: Numerically Multi-Scaled Embedding for Large-Scale Time Series Pretraining
Figure 3 for NuTime: Numerically Multi-Scaled Embedding for Large-Scale Time Series Pretraining
Figure 4 for NuTime: Numerically Multi-Scaled Embedding for Large-Scale Time Series Pretraining

Recent research on time-series self-supervised models shows great promise in learning semantic representations. However, it has been limited to small-scale datasets, e.g., thousands of temporal sequences. In this work, we make key technical contributions that are tailored to the numerical properties of time-series data and allow the model to scale to large datasets, e.g., millions of temporal sequences. We adopt the Transformer architecture by first partitioning the input into non-overlapping windows. Each window is then characterized by its normalized shape and two scalar values denoting the mean and standard deviation within each window. To embed scalar values that may possess arbitrary numerical scales to high-dimensional vectors, we propose a numerically multi-scaled embedding module enumerating all possible scales for the scalar values. The model undergoes pretraining using the proposed numerically multi-scaled embedding with a simple contrastive objective on a large-scale dataset containing over a million sequences. We study its transfer performance on a number of univariate and multivariate classification benchmarks. Our method exhibits remarkable improvement against previous representation learning approaches and establishes the new state of the art, even compared with domain-specific non-learning-based methods.

Viaarxiv icon