Abstract:Stochastic interpolants offer a robust framework for continuously transforming samples between arbitrary data distributions, holding significant promise for generative modeling. Despite their potential, rigorous finite-time convergence guarantees for practical numerical schemes remain largely unexplored. In this work, we address the finite-time convergence analysis of numerical implementations for ordinary differential equations (ODEs) derived from stochastic interpolants. Specifically, we establish novel finite-time error bounds in total variation distance for two widely used numerical integrators: the first-order forward Euler method and the second-order Heun's method. Furthermore, our analysis on the iteration complexity of specific stochastic interpolant constructions provides optimized schedules to enhance computational efficiency. Our theoretical findings are corroborated by numerical experiments, which validate the derived error bounds and complexity analyses.
Abstract:Creating immersive and playable 3D worlds from texts or images remains a fundamental challenge in computer vision and graphics. Existing world generation approaches typically fall into two categories: video-based methods that offer rich diversity but lack 3D consistency and rendering efficiency, and 3D-based methods that provide geometric consistency but struggle with limited training data and memory-inefficient representations. To address these limitations, we present HunyuanWorld 1.0, a novel framework that combines the best of both worlds for generating immersive, explorable, and interactive 3D scenes from text and image conditions. Our approach features three key advantages: 1) 360{\deg} immersive experiences via panoramic world proxies; 2) mesh export capabilities for seamless compatibility with existing computer graphics pipelines; 3) disentangled object representations for augmented interactivity. The core of our framework is a semantically layered 3D mesh representation that leverages panoramic images as 360{\deg} world proxies for semantic-aware world decomposition and reconstruction, enabling the generation of diverse 3D worlds. Extensive experiments demonstrate that our method achieves state-of-the-art performance in generating coherent, explorable, and interactive 3D worlds while enabling versatile applications in virtual reality, physical simulation, game development, and interactive content creation.
Abstract:While existing image-guided composition methods may help insert a foreground object onto a user-specified region of a background image, achieving natural blending inside the region with the rest of the image unchanged, we observe that these existing methods often struggle in synthesizing seamless interaction-aware compositions when the task involves human-object interactions. In this paper, we first propose HOComp, a novel approach for compositing a foreground object onto a human-centric background image, while ensuring harmonious interactions between the foreground object and the background person and their consistent appearances. Our approach includes two key designs: (1) MLLMs-driven Region-based Pose Guidance (MRPG), which utilizes MLLMs to identify the interaction region as well as the interaction type (e.g., holding and lefting) to provide coarse-to-fine constraints to the generated pose for the interaction while incorporating human pose landmarks to track action variations and enforcing fine-grained pose constraints; and (2) Detail-Consistent Appearance Preservation (DCAP), which unifies a shape-aware attention modulation mechanism, a multi-view appearance loss, and a background consistency loss to ensure consistent shapes/textures of the foreground and faithful reproduction of the background human. We then propose the first dataset, named Interaction-aware Human-Object Composition (IHOC), for the task. Experimental results on our dataset show that HOComp effectively generates harmonious human-object interactions with consistent appearances, and outperforms relevant methods qualitatively and quantitatively.
Abstract:We investigate the performance of a Bayesian statistician tasked with recovering a rank-\(k\) signal matrix \(\bS \bS^{\top} \in \mathbb{R}^{n \times n}\), corrupted by element-wise additive Gaussian noise. This problem lies at the core of numerous applications in machine learning, signal processing, and statistics. We derive an analytic expression for the asymptotic mean-square error (MSE) of the Bayesian estimator under mismatches in the assumed signal rank, signal power, and signal-to-noise ratio (SNR), considering both sphere and Gaussian signals. Additionally, we conduct a rigorous analysis of how rank mismatch influences the asymptotic MSE. Our primary technical tools include the spectrum of Gaussian orthogonal ensembles (GOE) with low-rank perturbations and asymptotic behavior of \(k\)-dimensional spherical integrals.
Abstract:Real-world applications like video gaming and virtual reality often demand the ability to model 3D scenes that users can explore along custom camera trajectories. While significant progress has been made in generating 3D objects from text or images, creating long-range, 3D-consistent, explorable 3D scenes remains a complex and challenging problem. In this work, we present Voyager, a novel video diffusion framework that generates world-consistent 3D point-cloud sequences from a single image with user-defined camera path. Unlike existing approaches, Voyager achieves end-to-end scene generation and reconstruction with inherent consistency across frames, eliminating the need for 3D reconstruction pipelines (e.g., structure-from-motion or multi-view stereo). Our method integrates three key components: 1) World-Consistent Video Diffusion: A unified architecture that jointly generates aligned RGB and depth video sequences, conditioned on existing world observation to ensure global coherence 2) Long-Range World Exploration: An efficient world cache with point culling and an auto-regressive inference with smooth video sampling for iterative scene extension with context-aware consistency, and 3) Scalable Data Engine: A video reconstruction pipeline that automates camera pose estimation and metric depth prediction for arbitrary videos, enabling large-scale, diverse training data curation without manual 3D annotations. Collectively, these designs result in a clear improvement over existing methods in visual quality and geometric accuracy, with versatile applications.
Abstract:Timely and accurate detection of hurricane debris is critical for effective disaster response and community resilience. While post-disaster aerial imagery is readily available, robust debris segmentation solutions applicable across multiple disaster regions remain limited. Developing a generalized solution is challenging due to varying environmental and imaging conditions that alter debris' visual signatures across different regions, further compounded by the scarcity of training data. This study addresses these challenges by fine-tuning pre-trained foundational vision models, achieving robust performance with a relatively small, high-quality dataset. Specifically, this work introduces an open-source dataset comprising approximately 1,200 manually annotated aerial RGB images from Hurricanes Ian, Ida, and Ike. To mitigate human biases and enhance data quality, labels from multiple annotators are strategically aggregated and visual prompt engineering is employed. The resulting fine-tuned model, named fCLIPSeg, achieves a Dice score of 0.70 on data from Hurricane Ida -- a disaster event entirely excluded during training -- with virtually no false positives in debris-free areas. This work presents the first event-agnostic debris segmentation model requiring only standard RGB imagery during deployment, making it well-suited for rapid, large-scale post-disaster impact assessments and recovery planning.
Abstract:With the rapid development of 3D printing, the demand for personalized and customized production on the manufacturing line is steadily increasing. Efficient merging of printing workpieces can significantly enhance the processing efficiency of the production line. Addressing the challenge, a Large Language Model (LLM)-driven method is established in this paper for the autonomous merging of 3D printing work orders, integrated with a memory-augmented learning strategy. In industrial scenarios, both device and order features are modeled into LLM-readable natural language prompt templates, and develop an order-device matching tool along with a merging interference checking module. By incorporating a self-memory learning strategy, an intelligent agent for autonomous order merging is constructed, resulting in improved accuracy and precision in order allocation. The proposed method effectively leverages the strengths of LLMs in industrial applications while reducing hallucination.
Abstract:The stochastic interpolant framework offers a powerful approach for constructing generative models based on ordinary differential equations (ODEs) or stochastic differential equations (SDEs) to transform arbitrary data distributions. However, prior analyses of this framework have primarily focused on the continuous-time setting, assuming a perfect solution of the underlying equations. In this work, we present the first discrete-time analysis of the stochastic interpolant framework, where we introduce an innovative discrete-time sampler and derive a finite-time upper bound on its distribution estimation error. Our result provides a novel quantification of how different factors, including the distance between source and target distributions and estimation accuracy, affect the convergence rate and also offers a new principled way to design efficient schedules for convergence acceleration. Finally, numerical experiments are conducted on the discrete-time sampler to corroborate our theoretical findings.
Abstract:Random feature latent variable models (RFLVMs) represent the state-of-the-art in latent variable models, capable of handling non-Gaussian likelihoods and effectively uncovering patterns in high-dimensional data. However, their heavy reliance on Monte Carlo sampling results in scalability issues which makes it difficult to use these models for datasets with a massive number of observations. To scale up RFLVMs, we turn to the optimization-based variational Bayesian inference (VBI) algorithm which is known for its scalability compared to sampling-based methods. However, implementing VBI for RFLVMs poses challenges, such as the lack of explicit probability distribution functions (PDFs) for the Dirichlet process (DP) in the kernel learning component, and the incompatibility of existing VBI algorithms with RFLVMs. To address these issues, we introduce a stick-breaking construction for DP to obtain an explicit PDF and a novel VBI algorithm called ``block coordinate descent variational inference" (BCD-VI). This enables the development of a scalable version of RFLVMs, or in short, SRFLVM. Our proposed method shows scalability, computational efficiency, superior performance in generating informative latent representations and the ability of imputing missing data across various real-world datasets, outperforming state-of-the-art competitors.
Abstract:This paper explores the weakly-supervised referring image segmentation (WRIS) problem, and focuses on a challenging setup where target localization is learned directly from image-text pairs. We note that the input text description typically already contains detailed information on how to localize the target object, and we also observe that humans often follow a step-by-step comprehension process (\ie, progressively utilizing target-related attributes and relations as cues) to identify the target object. Hence, we propose a novel Progressive Comprehension Network (PCNet) to leverage target-related textual cues from the input description for progressively localizing the target object. Specifically, we first use a Large Language Model (LLM) to decompose the input text description into short phrases. These short phrases are taken as target-related cues and fed into a Conditional Referring Module (CRM) in multiple stages, to allow updating the referring text embedding and enhance the response map for target localization in a multi-stage manner. Based on the CRM, we then propose a Region-aware Shrinking (RaS) loss to constrain the visual localization to be conducted progressively in a coarse-to-fine manner across different stages. Finally, we introduce an Instance-aware Disambiguation (IaD) loss to suppress instance localization ambiguity by differentiating overlapping response maps generated by different referring texts on the same image. Extensive experiments show that our method outperforms SOTA methods on three common benchmarks.