Abstract:Public Safety Power Shutoffs (PSPS) force rapid topology changes that can render standard operating points infeasible, requiring operators to quickly identify corrective transmission switching actions that reduce load shedding while maintaining acceptable voltage behavior. We present a verifiable, multi-stage adaptation pipeline that fine-tunes an instruction-tuned large language model (LLM) to generate \emph{open-only} corrective switching plans from compact PSPS scenario summaries under an explicit switching budget. First, supervised fine-tuning distills a DC-OPF MILP oracle into a constrained action grammar that enables reliable parsing and feasibility checks. Second, direct preference optimization refines the policy using AC-evaluated preference pairs ranked by a voltage-penalty metric, injecting voltage-awareness beyond DC imitation. Finally, best-of-$N$ selection provides an inference-time addition by choosing the best feasible candidate under the target metric. On IEEE 118-bus PSPS scenarios, fine-tuning substantially improves DC objective values versus zero-shot generation, reduces AC power-flow failure from 50\% to single digits, and improves voltage-penalty outcomes on the common-success set. Code and data-generation scripts are released to support reproducibility.
Abstract:Although foundation models have demonstrated remarkable success in general domains, the application of these models to electroencephalography (EEG) analysis is constrained by substantial data requirements and high parameterization. These factors incur prohibitive computational costs, thereby impeding deployment in resource-constrained clinical environments. Conversely, general-purpose automated machine learning frameworks are often ill-suited for this domain, as exploration within an unbounded programmatic space fails to incorporate essential neurophysiological priors and frequently yields solutions that lack scientific plausibility. To address these limitations, we propose NeuroWeaver, a unified autonomous evolutionary agent designed to generalize across diverse EEG datasets and tasks by reformulating pipeline engineering as a discrete constrained optimization problem. Specifically, we employ a Domain-Informed Subspace Initialization to confine the search to neuroscientifically plausible manifolds, coupled with a Multi-Objective Evolutionary Optimization that dynamically balances performance, novelty, and efficiency via self-reflective refinement. Empirical evaluations across five heterogeneous benchmarks demonstrate that NeuroWeaver synthesizes lightweight solutions that consistently outperform state-of-the-art task-specific methods and achieve performance comparable to large-scale foundation models, despite utilizing significantly fewer parameters.
Abstract:Although large language models (LLMs) demonstrate expert-level medical knowledge, aligning their open-ended outputs with fine-grained clinician preferences remains challenging. Existing methods often rely on coarse objectives or unreliable automated judges that are weakly grounded in professional guidelines. We propose a two-stage framework to address this gap. First, we introduce HealthRubrics, a dataset of 7,034 physician-verified preference examples in which clinicians refine LLM-drafted rubrics to meet rigorous medical standards. Second, we distill these rubrics into HealthPrinciples: 119 broadly reusable, clinically grounded principles organized by clinical dimensions, enabling scalable supervision beyond manual annotation. We use HealthPrinciples for (1) offline alignment by synthesizing rubrics for unlabeled queries and (2) an inference-time tool for guided self-revision. A 30B-A3B model trained with our framework achieves 33.4% on HealthBench-Hard, outperforming much larger models including Deepseek-R1 and o3, establishing a resource-efficient baseline for clinical alignment.
Abstract:Large language models (LLMs) based on the Transformer have demonstrated strong performance across diverse tasks. However, current models still exhibit substantial limitations in out-of-distribution (OOD) generalization compared with humans. We investigate this gap through periodicity, one of the basic OOD scenarios. Periodicity captures invariance amid variation. Periodicity generalization represents a model's ability to extract periodic patterns from training data and generalize to OOD scenarios. We introduce a unified interpretation of periodicity from the perspective of abstract algebra and reasoning, including both single and composite periodicity, to explain why Transformers struggle to generalize periodicity. Then we construct Coper about composite periodicity, a controllable generative benchmark with two OOD settings, Hollow and Extrapolation. Experiments reveal that periodicity generalization in Transformers is limited, where models can memorize periodic data during training, but cannot generalize to unseen composite periodicity. We release the source code to support future research.
Abstract:Graphical user interface (GUI) agents are rapidly progressing toward autonomous interaction and reliable task execution across diverse applications. However, two central challenges remain unresolved: automating the evaluation of agent trajectories and generating high-quality training data at scale to enable continual improvement. Existing approaches often depend on manual annotation or static rule-based verification, which restricts scalability and limits adaptability in dynamic environments. We present MagicGUI-RMS, a multi-agent reward model system that delivers adaptive trajectory evaluation, corrective feedback, and self-evolving learning capabilities. MagicGUI-RMS integrates a Domain-Specific Reward Model (DS-RM) with a General-Purpose Reward Model (GP-RM), enabling fine-grained action assessment and robust generalization across heterogeneous GUI tasks. To support reward learning at scale, we design a structured data construction pipeline that automatically produces balanced and diverse reward datasets, effectively reducing annotation costs while maintaining sample fidelity. During execution, the reward model system identifies erroneous actions, proposes refined alternatives, and continuously enhances agent behavior through an automated data-reflux mechanism. Extensive experiments demonstrate that MagicGUI-RMS yields substantial gains in task accuracy, behavioral robustness. These results establish MagicGUI-RMS as a principled and effective foundation for building self-improving GUI agents driven by reward-based adaptation.
Abstract:Large language models (LLMs) excel at general programming but struggle with domain-specific software development, necessitating domain specialization methods for LLMs to learn and utilize domain knowledge and data. However, existing domain-specific code benchmarks cannot evaluate the effectiveness of domain specialization methods, which focus on assessing what knowledge LLMs possess rather than how they acquire and apply new knowledge, lacking explicit knowledge corpora for developing domain specialization methods. To this end, we present KOCO-BENCH, a novel benchmark designed for evaluating domain specialization methods in real-world software development. KOCO-BENCH contains 6 emerging domains with 11 software frameworks and 25 projects, featuring curated knowledge corpora alongside multi-granularity evaluation tasks including domain code generation (from function-level to project-level with rigorous test suites) and domain knowledge understanding (via multiple-choice Q&A). Unlike previous benchmarks that only provide test sets for direct evaluation, KOCO-BENCH requires acquiring and applying diverse domain knowledge (APIs, rules, constraints, etc.) from knowledge corpora to solve evaluation tasks. Our evaluations reveal that KOCO-BENCH poses significant challenges to state-of-the-art LLMs. Even with domain specialization methods (e.g., SFT, RAG, kNN-LM) applied, improvements remain marginal. Best-performing coding agent, Claude Code, achieves only 34.2%, highlighting the urgent need for more effective domain specialization methods. We release KOCO-BENCH, evaluation code, and baselines to advance further research at https://github.com/jiangxxxue/KOCO-bench.
Abstract:Resolving team conflicts requires not only task-specific competence, but also social intelligence to find common ground and build consensus. As AI agents increasingly collaborate on complex work, they must develop coordination capabilities to function as effective teammates. Yet we hypothesize that current agents lack these capabilities. To test this, we introduce CooperBench, a benchmark of over 600 collaborative coding tasks across 12 libraries in 4 programming languages. Each task assigns two agents different features that can be implemented independently but may conflict without proper coordination. Tasks are grounded in real open-source repositories with expert-written tests. Evaluating state-of-the-art coding agents, we observe the curse of coordination: agents achieve on average 30% lower success rates when working together compared to performing both tasks individually. This contrasts sharply with human teams, where adding teammates typically improves productivity. Our analysis reveals three key issues: (1) communication channels become jammed with vague, ill-timed, and inaccurate messages; (2) even with effective communication, agents deviate from their commitments; and (3) agents often hold incorrect expectations about others' plans and communication. Through large-scale simulation, we also observe rare but interesting emergent coordination behavior including role division, resource division, and negotiation. Our research presents a novel benchmark for collaborative coding and calls for a shift from pursuing individual agent capability to developing social intelligence.
Abstract:We present UIKA, a feed-forward animatable Gaussian head model from an arbitrary number of unposed inputs, including a single image, multi-view captures, and smartphone-captured videos. Unlike the traditional avatar method, which requires a studio-level multi-view capture system and reconstructs a human-specific model through a long-time optimization process, we rethink the task through the lenses of model representation, network design, and data preparation. First, we introduce a UV-guided avatar modeling strategy, in which each input image is associated with a pixel-wise facial correspondence estimation. Such correspondence estimation allows us to reproject each valid pixel color from screen space to UV space, which is independent of camera pose and character expression. Furthermore, we design learnable UV tokens on which the attention mechanism can be applied at both the screen and UV levels. The learned UV tokens can be decoded into canonical Gaussian attributes using aggregated UV information from all input views. To train our large avatar model, we additionally prepare a large-scale, identity-rich synthetic training dataset. Our method significantly outperforms existing approaches in both monocular and multi-view settings. Project page: https://zijian-wu.github.io/uika-page/
Abstract:Crop mapping based on satellite images time-series (SITS) holds substantial economic value in agricultural production settings, in which parcel segmentation is an essential step. Existing approaches have achieved notable advancements in SITS segmentation with predetermined sequence lengths. However, we found that these approaches overlooked the generalization capability of models across scenarios with varying temporal length, leading to markedly poor segmentation results in such cases. To address this issue, we propose TEA, a TEmporal Adaptive SITS semantic segmentation method to enhance the model's resilience under varying sequence lengths. We introduce a teacher model that encapsulates the global sequence knowledge to guide a student model with adaptive temporal input lengths. Specifically, teacher shapes the student's feature space via intermediate embedding, prototypes and soft label perspectives to realize knowledge transfer, while dynamically aggregating student model to mitigate knowledge forgetting. Finally, we introduce full-sequence reconstruction as an auxiliary task to further enhance the quality of representations across inputs of varying temporal lengths. Through extensive experiments, we demonstrate that our method brings remarkable improvements across inputs of different temporal lengths on common benchmarks. Our code will be publicly available.
Abstract:This paper addresses the problem of accurate localization for quadrupedal robots operating in narrow tunnel-like environments. Due to the long and homogeneous characteristics of such scenarios, LiDAR measurements often provide weak geometric constraints, making traditional sensor fusion methods susceptible to accumulated motion estimation errors. To address these challenges, we propose AIMS, an adaptive LiDAR-IMU-leg odometry fusion method for robust quadrupedal robot localization in degenerate environments. The proposed method is formulated within an error-state Kalman filtering framework, where LiDAR and leg odometry measurements are integrated with IMU-based state prediction, and measurement noise covariance matrices are adaptively adjusted based on online degeneracy-aware reliability assessment. Experimental results obtained in narrow corridor environments demonstrate that the proposed method improves localization accuracy and robustness compared with state-of-the-art approaches.