Abstract:In the study of drug function and precision medicine, identifying new drug-microbe associations is crucial. However, current methods isolate association and similarity analysis of drug and microbe, lacking effective inter-view optimization and coordinated multi-view feature fusion. In our study, a multi-view Divergence-Convergence Feature Augmentation framework for Drug-related Microbes Prediction (DCFA_DMP) is proposed, to better learn and integrate association information and similarity information. In the divergence phase, DCFA_DMP strengthens the complementarity and diversity between heterogeneous information and similarity information by performing Adversarial Learning method between the association network view and different similarity views, optimizing the feature space. In the convergence phase, a novel Bidirectional Synergistic Attention Mechanism is proposed to deeply synergize the complementary features between different views, achieving a deep fusion of the feature space. Moreover, Transformer graph learning is alternately applied on the drug-microbe heterogeneous graph, enabling each drug or microbe node to focus on the most relevant nodes. Numerous experiments demonstrate DCFA_DMP's significant performance in predicting drug-microbe associations. It also proves effectiveness in predicting associations for new drugs and microbes in cold start experiments, further confirming its stability and reliability in predicting potential drug-microbe associations.
Abstract:In tennis tournaments, momentum, a critical yet elusive phenomenon, reflects the dynamic shifts in performance of athletes that can decisively influence match outcomes. Despite its significance, momentum in terms of effective modeling and multi-granularity analysis across points, games, sets, and matches in tennis tournaments remains underexplored. In this study, we define a novel Momentum Score (MS) metric to quantify a player's momentum level in multi-granularity tennis tournaments, and design HydraNet, a momentum-driven state-space duality-based framework, to model MS by integrating thirty-two heterogeneous dimensions of athletes performance in serve, return, psychology and fatigue. HydraNet integrates a Hydra module, which builds upon a state-space duality (SSD) framework, capturing explicit momentum with a sliding-window mechanism and implicit momentum through cross-game state propagation. It also introduces a novel Versus Learning method to better enhance the adversarial nature of momentum between the two athletes at a macro level, along with a Collaborative-Adversarial Attention Mechanism (CAAM) for capturing and integrating intra-player and inter-player dynamic momentum at a micro level. Additionally, we construct a million-level tennis cross-tournament dataset spanning from 2012-2023 Wimbledon and 2013-2023 US Open, and validate the multi-granularity modeling capability of HydraNet for the MS metric on this dataset. Extensive experimental evaluations demonstrate that the MS metric constructed by the HydraNet framework provides actionable insights into how momentum impacts outcomes at different granularities, establishing a new foundation for momentum modeling and sports analysis. To the best of our knowledge, this is the first work to explore and effectively model momentum across multiple granularities in professional tennis tournaments.