Abstract:Quadrupedal robots with manipulators offer strong mobility and adaptability for grasping in unstructured, dynamic environments through coordinated whole-body control. However, existing research has predominantly focused on static-object grasping, neglecting the challenges posed by dynamic targets and thus limiting applicability in dynamic scenarios such as logistics sorting and human-robot collaboration. To address this, we introduce DQ-Bench, a new benchmark that systematically evaluates dynamic grasping across varying object motions, velocities, heights, object types, and terrain complexities, along with comprehensive evaluation metrics. Building upon this benchmark, we propose DQ-Net, a compact teacher-student framework designed to infer grasp configurations from limited perceptual cues. During training, the teacher network leverages privileged information to holistically model both the static geometric properties and dynamic motion characteristics of the target, and integrates a grasp fusion module to deliver robust guidance for motion planning. Concurrently, we design a lightweight student network that performs dual-viewpoint temporal modeling using only the target mask, depth map, and proprioceptive state, enabling closed-loop action outputs without reliance on privileged data. Extensive experiments on DQ-Bench demonstrate that DQ-Net achieves robust dynamic objects grasping across multiple task settings, substantially outperforming baseline methods in both success rate and responsiveness.
Abstract:Shadow removal is challenging due to the complex interaction of geometry, lighting, and environmental factors. Existing unsupervised methods often overlook shadow-specific priors, leading to incomplete shadow recovery. To address this issue, we propose a novel unsupervised Frequency Aware Shadow Removal Network (FASR-Net), which leverages the inherent frequency characteristics of shadow regions. Specifically, the proposed Wavelet Attention Downsampling Module (WADM) integrates wavelet-based image decomposition and deformable attention, effectively breaking down the image into frequency components to enhance shadow details within specific frequency bands. We also introduce several new loss functions for precise shadow-free image reproduction: a frequency loss to capture image component details, a brightness-chromaticity loss that references the chromaticity of shadow-free regions, and an alignment loss to ensure smooth transitions between shadowed and shadow-free regions. Experimental results on the AISTD and SRD datasets demonstrate that our method achieves superior shadow removal performance.
Abstract:Learning behavior in legged robots presents a significant challenge due to its inherent instability and complex constraints. Recent research has proposed the use of a large language model (LLM) to generate reward functions in reinforcement learning, thereby replacing the need for manually designed rewards by experts. However, this approach, which relies on textual descriptions to define learning objectives, fails to achieve controllable and precise behavior learning with clear directionality. In this paper, we introduce a new video2reward method, which directly generates reward functions from videos depicting the behaviors to be mimicked and learned. Specifically, we first process videos containing the target behaviors, converting the motion information of individuals in the videos into keypoint trajectories represented as coordinates through a video2text transforming module. These trajectories are then fed into an LLM to generate the reward function, which in turn is used to train the policy. To enhance the quality of the reward function, we develop a video-assisted iterative reward refinement scheme that visually assesses the learned behaviors and provides textual feedback to the LLM. This feedback guides the LLM to continually refine the reward function, ultimately facilitating more efficient behavior learning. Experimental results on tasks involving bipedal and quadrupedal robot motion control demonstrate that our method surpasses the performance of state-of-the-art LLM-based reward generation methods by over 37.6% in terms of human normalized score. More importantly, by switching video inputs, we find our method can rapidly learn diverse motion behaviors such as walking and running.