Carnegie Mellon University
Abstract:Cryo-electron microscopy (cryo-EM) offers near-atomic resolution imaging of macromolecules, but developing robust models for downstream analysis is hindered by the scarcity of high-quality annotated data. While synthetic data generation has emerged as a potential solution, existing methods often fail to capture both the structural diversity of biological specimens and the complex, spatially varying noise inherent in cryo-EM imaging. To overcome these limitations, we propose CryoCCD, a synthesis framework that integrates biophysical modeling with generative techniques. Specifically, CryoCCD produces multi-scale cryo-EM micrographs that reflect realistic biophysical variability through compositional heterogeneity, cellular context, and physics-informed imaging. To generate realistic noise, we employ a conditional diffusion model, enhanced by cycle consistency to preserve structural fidelity and mask-aware contrastive learning to capture spatially adaptive noise patterns. Extensive experiments show that CryoCCD generates structurally accurate micrographs and enhances performance in downstream tasks, outperforming state-of-the-art baselines in both particle picking and reconstruction.
Abstract:Cryo-electron tomography (cryo-ET) has emerged as a powerful technique for imaging macromolecular complexes in their near-native states. However, the localization of 3D particles in cellular environments still presents a significant challenge due to low signal-to-noise ratios and missing wedge artifacts. Deep learning approaches have shown great potential, but they need huge amounts of data, which can be a challenge in cryo-ET scenarios where labeled data is often scarce. In this paper, we propose a novel Self-augmented and Self-interpreted (SaSi) deep learning approach towards few-shot particle detection in 3D cryo-ET images. Our method builds upon self-augmentation techniques to further boost data utilization and introduces a self-interpreted segmentation strategy for alleviating dependency on labeled data, hence improving generalization and robustness. As demonstrated by experiments conducted on both simulated and real-world cryo-ET datasets, the SaSi approach significantly outperforms existing state-of-the-art methods for particle localization. This research increases understanding of how to detect particles with very few labels in cryo-ET and thus sets a new benchmark for few-shot learning in structural biology.
Abstract:Face reenactment and portrait relighting are essential tasks in portrait editing, yet they are typically addressed independently, without much synergy. Most face reenactment methods prioritize motion control and multiview consistency, while portrait relighting focuses on adjusting shading effects. To take advantage of both geometric consistency and illumination awareness, we introduce Total-Editing, a unified portrait editing framework that enables precise control over appearance, motion, and lighting. Specifically, we design a neural radiance field decoder with intrinsic decomposition capabilities. This allows seamless integration of lighting information from portrait images or HDR environment maps into synthesized portraits. We also incorporate a moving least squares based deformation field to enhance the spatiotemporal coherence of avatar motion and shading effects. With these innovations, our unified framework significantly improves the quality and realism of portrait editing results. Further, the multi-source nature of Total-Editing supports more flexible applications, such as illumination transfer from one portrait to another, or portrait animation with customized backgrounds.
Abstract:Medical image segmentation is vital for clinical diagnosis, yet current deep learning methods often demand extensive expert effort, i.e., either through annotating large training datasets or providing prompts at inference time for each new case. This paper introduces a zero-shot and automatic segmentation pipeline that combines off-the-shelf vision-language and segmentation foundation models. Given a medical image and a task definition (e.g., "segment the optic disc in an eye fundus image"), our method uses a grounding model to generate an initial bounding box, followed by a visual prompt boosting module that enhance the prompts, which are then processed by a promptable segmentation model to produce the final mask. To address the challenges of domain gap and result verification, we introduce a test-time adaptation framework featuring a set of learnable adaptors that align the medical inputs with foundation model representations. Its hyperparameters are optimized via Bayesian Optimization, guided by a proxy validation model without requiring ground-truth labels. Our pipeline offers an annotation-efficient and scalable solution for zero-shot medical image segmentation across diverse tasks. Our pipeline is evaluated on seven diverse medical imaging datasets and shows promising results. By proper decomposition and test-time adaptation, our fully automatic pipeline performs competitively with weakly-prompted interactive foundation models.
Abstract:Localized image captioning has made significant progress with models like the Describe Anything Model (DAM), which can generate detailed region-specific descriptions without explicit region-text supervision. However, such capabilities have yet to be widely applied to specialized domains like medical imaging, where diagnostic interpretation relies on subtle regional findings rather than global understanding. To mitigate this gap, we propose MedDAM, the first comprehensive framework leveraging large vision-language models for region-specific captioning in medical images. MedDAM employs medical expert-designed prompts tailored to specific imaging modalities and establishes a robust evaluation benchmark comprising a customized assessment protocol, data pre-processing pipeline, and specialized QA template library. This benchmark evaluates both MedDAM and other adaptable large vision-language models, focusing on clinical factuality through attribute-level verification tasks, thereby circumventing the absence of ground-truth region-caption pairs in medical datasets. Extensive experiments on the VinDr-CXR, LIDC-IDRI, and SkinCon datasets demonstrate MedDAM's superiority over leading peers (including GPT-4o, Claude 3.7 Sonnet, LLaMA-3.2 Vision, Qwen2.5-VL, GPT-4Rol, and OMG-LLaVA) in the task, revealing the importance of region-level semantic alignment in medical image understanding and establishing MedDAM as a promising foundation for clinical vision-language integration.
Abstract:Personalized news recommendation systems often struggle to effectively capture the complexity of user preferences, as they rely heavily on shallow representations, such as article titles and abstracts. To address this problem, we introduce a novel method, namely PNR-LLM, for Large Language Models for Personalized News Recommendation. Specifically, PNR-LLM harnesses the generation capabilities of LLMs to enrich news titles and abstracts, and consequently improves recommendation quality. PNR-LLM contains a novel module, News Enrichment via LLMs, which generates deeper semantic information and relevant entities from articles, transforming shallow contents into richer representations. We further propose an attention mechanism to aggregate enriched semantic- and entity-level data, forming unified user and news embeddings that reveal a more accurate user-news match. Extensive experiments on MIND datasets show that PNR-LLM outperforms state-of-the-art baselines. Moreover, the proposed data enrichment module is model-agnostic, and we empirically show that applying our proposed module to multiple existing models can further improve their performance, verifying the advantage of our design.
Abstract:Despite the similar structures of human faces, existing face alignment methods cannot learn unified knowledge from multiple datasets with different landmark annotations. The limited training samples in a single dataset commonly result in fragile robustness in this field. To mitigate knowledge discrepancies among different datasets and train a task-agnostic unified face alignment (TUFA) framework, this paper presents a strategy to unify knowledge from multiple datasets. Specifically, we calculate a mean face shape for each dataset. To explicitly align these mean shapes on an interpretable plane based on their semantics, each shape is then incorporated with a group of semantic alignment embeddings. The 2D coordinates of these aligned shapes can be viewed as the anchors of the plane. By encoding them into structure prompts and further regressing the corresponding facial landmarks using image features, a mapping from the plane to the target faces is finally established, which unifies the learning target of different datasets. Consequently, multiple datasets can be utilized to boost the generalization ability of the model. The successful mitigation of discrepancies also enhances the efficiency of knowledge transferring to a novel dataset, significantly boosts the performance of few-shot face alignment. Additionally, the interpretable plane endows TUFA with a task-agnostic characteristic, enabling it to locate landmarks unseen during training in a zero-shot manner. Extensive experiments are carried on seven benchmarks and the results demonstrate an impressive improvement in face alignment brought by knowledge discrepancies mitigation.
Abstract:The primary challenge in continuous sign language recognition (CSLR) mainly stems from the presence of multi-orientational and long-term motions. However, current research overlooks these crucial aspects, significantly impacting accuracy. To tackle these issues, we propose a novel CSLR framework: Orientation-aware Long-term Motion Decoupling (OLMD), which efficiently aggregates long-term motions and decouples multi-orientational signals into easily interpretable components. Specifically, our innovative Long-term Motion Aggregation (LMA) module filters out static redundancy while adaptively capturing abundant features of long-term motions. We further enhance orientation awareness by decoupling complex movements into horizontal and vertical components, allowing for motion purification in both orientations. Additionally, two coupling mechanisms are proposed: stage and cross-stage coupling, which together enrich multi-scale features and improve the generalization capabilities of the model. Experimentally, OLMD shows SOTA performance on three large-scale datasets: PHOENIX14, PHOENIX14-T, and CSL-Daily. Notably, we improved the word error rate (WER) on PHOENIX14 by an absolute 1.6% compared to the previous SOTA
Abstract:This paper investigates approximation capabilities of two-dimensional (2D) deep convolutional neural networks (CNNs), with Korobov functions serving as a benchmark. We focus on 2D CNNs, comprising multi-channel convolutional layers with zero-padding and ReLU activations, followed by a fully connected layer. We propose a fully constructive approach for building 2D CNNs to approximate Korobov functions and provide rigorous analysis of the complexity of the constructed networks. Our results demonstrate that 2D CNNs achieve near-optimal approximation rates under the continuous weight selection model, significantly alleviating the curse of dimensionality. This work provides a solid theoretical foundation for 2D CNNs and illustrates their potential for broader applications in function approximation.
Abstract:Recent advancements in 3D reconstruction coupled with neural rendering techniques have greatly improved the creation of photo-realistic 3D scenes, influencing both academic research and industry applications. The technique of 3D Gaussian Splatting and its variants incorporate the strengths of both primitive-based and volumetric representations, achieving superior rendering quality. While 3D Geometric Scattering (3DGS) and its variants have advanced the field of 3D representation, they fall short in capturing the stochastic properties of non-local structural information during the training process. Additionally, the initialisation of spherical functions in 3DGS-based methods often fails to engage higher-order terms in early training rounds, leading to unnecessary computational overhead as training progresses. Furthermore, current 3DGS-based approaches require training on higher resolution images to render higher resolution outputs, significantly increasing memory demands and prolonging training durations. We introduce StructGS, a framework that enhances 3D Gaussian Splatting (3DGS) for improved novel-view synthesis in 3D reconstruction. StructGS innovatively incorporates a patch-based SSIM loss, dynamic spherical harmonics initialisation and a Multi-scale Residual Network (MSRN) to address the above-mentioned limitations, respectively. Our framework significantly reduces computational redundancy, enhances detail capture and supports high-resolution rendering from low-resolution inputs. Experimentally, StructGS demonstrates superior performance over state-of-the-art (SOTA) models, achieving higher quality and more detailed renderings with fewer artifacts.