Abstract:Vision-Language-Action (VLA) models have shown great performance in robotic manipulation by mapping visual observations and language instructions directly to actions. However, they remain brittle under distribution shifts: when test scenarios change, VLAs often reproduce memorized trajectories instead of adapting to the updated scene, which is a failure mode we refer to as the "Memory Trap". This limitation stems from the end-to-end design, which lacks explicit 3D spatial reasoning and prevents reliable identification of actionable regions in unfamiliar environments. To compensate for this missing spatial understanding, 3D Spatial Affordance Fields (SAFs) can provide a geometric representation that highlights where interactions are physically feasible, offering explicit cues about regions the robot should approach or avoid. We therefore introduce Affordance Field Intervention (AFI), a lightweight hybrid framework that uses SAFs as an on-demand plug-in to guide VLA behavior. Our system detects memory traps through proprioception, repositions the robot to recent high-affordance regions, and proposes affordance-driven waypoints that anchor VLA-generated actions. A SAF-based scorer then selects trajectories with the highest cumulative affordance. Extensive experiments demonstrate that our method achieves an average improvement of 23.5% across different VLA backbones ($π_{0}$ and $π_{0.5}$) under out-of-distribution scenarios on real-world robotic platforms, and 20.2% on the LIBERO-Pro benchmark, validating its effectiveness in enhancing VLA robustness to distribution shifts.
Abstract:Training Large Language Models (LLMs) for multi-turn Tool-Integrated Reasoning (TIR) - where models iteratively reason, generate code, and verify through execution - remains challenging for existing reinforcement learning (RL) approaches. Current RL methods, exemplified by Group Relative Policy Optimization (GRPO), suffer from coarse-grained, trajectory-level rewards that provide insufficient learning signals for complex multi-turn interactions, leading to training stagnation. To address this issue, we propose Group Turn Policy Optimization (GTPO), a novel RL algorithm specifically designed for training LLMs on multi-turn TIR tasks. GTPO introduces three key innovations: (1) turn-level reward assignment that provides fine-grained feedback for individual turns, (2) return-based advantage estimation where normalized discounted returns are calculated as advantages, and (3) self-supervised reward shaping that exploits self-supervision signals from generated code to densify sparse binary outcome-based rewards. Our comprehensive evaluation demonstrates that GTPO outperforms GRPO by 3.0% on average across diverse reasoning benchmarks, establishing its effectiveness for advancing complex mathematical reasoning in the real world.
Abstract:Model-based reinforcement learning (MBRL) typically relies on modeling environment dynamics for data efficiency. However, due to the accumulation of model errors over long-horizon rollouts, such methods often face challenges in maintaining modeling stability. To address this, we propose CtrlFlow, a trajectory-level synthetic method using conditional flow matching (CFM), which directly modeling the distribution of trajectories from initial states to high-return terminal states without explicitly modeling the environment transition function. Our method ensures optimal trajectory sampling by minimizing the control energy governed by the non-linear Controllability Gramian Matrix, while the generated diverse trajectory data significantly enhances the robustness and cross-task generalization of policy learning. In online settings, CtrlFlow demonstrates the better performance on common MuJoCo benchmark tasks than dynamics models and achieves superior sample efficiency compared to standard MBRL methods.
Abstract:This paper introduces ThoughtProbe, a novel inference time framework that leverages the hidden reasoning features of Large Language Models (LLMs) to improve their reasoning performance. Unlike previous works that manipulate the hidden representations to steer LLM generation, we harness them as discriminative signals to guide the tree structured response space exploration. In each node expansion, a classifier serves as a scoring and ranking mechanism that efficiently allocates computational resources by prioritizing higher score candidates for continuation. After completing the tree expansion, we collect answers from all branches to form a candidate answer pool. We then propose a branch aggregation method that marginalizes over all supporting branches by aggregating their CoT scores, thereby identifying the optimal answer from the pool. Experimental results show that our framework's comprehensive exploration not only covers valid reasoning chains but also effectively identifies them, achieving significant improvements across multiple arithmetic reasoning benchmarks.




Abstract:Knowledge editing has emerged as an efficient approach for updating factual knowledge in large language models (LLMs). It typically locates knowledge storage modules and then modifies their parameters. However, most existing methods focus on the weights of multilayer perceptron (MLP) modules, which are often identified as the main repositories of factual information. Other components, such as attention (Attn) modules, are often ignored during editing. This imbalance can leave residual outdated knowledge and limit editing effectiveness. We perform comprehensive knowledge localization experiments on advanced LLMs and find that Attn modules play a substantial role in factual knowledge storage and retrieval, especially in earlier layers. Based on these insights, we propose IntAttn-Edit, a method that extends the associative memory paradigm to jointly update both MLP and Attn modules. Our approach uses a knowledge balancing strategy that allocates update magnitudes in proportion to each module's measured contribution to knowledge storage. Experiments on standard benchmarks show that IntAttn-Edit achieves higher edit success, better generalization, and stronger knowledge preservation than prior methods. Further analysis shows that the balancing strategy keeps editing performance within an optimal range across diverse settings.
Abstract:Code-capable large language model (LLM) agents are increasingly embedded into software engineering workflows where they can read, write, and execute code, raising the stakes of safety-bypass ("jailbreak") attacks beyond text-only settings. Prior evaluations emphasize refusal or harmful-text detection, leaving open whether agents actually compile and run malicious programs. We present JAWS-BENCH (Jailbreaks Across WorkSpaces), a benchmark spanning three escalating workspace regimes that mirror attacker capability: empty (JAWS-0), single-file (JAWS-1), and multi-file (JAWS-M). We pair this with a hierarchical, executable-aware Judge Framework that tests (i) compliance, (ii) attack success, (iii) syntactic correctness, and (iv) runtime executability, moving beyond refusal to measure deployable harm. Using seven LLMs from five families as backends, we find that under prompt-only conditions in JAWS-0, code agents accept 61% of attacks on average; 58% are harmful, 52% parse, and 27% run end-to-end. Moving to single-file regime in JAWS-1 drives compliance to ~ 100% for capable models and yields a mean ASR (Attack Success Rate) ~ 71%; the multi-file regime (JAWS-M) raises mean ASR to ~ 75%, with 32% instantly deployable attack code. Across models, wrapping an LLM in an agent substantially increases vulnerability -- ASR raises by 1.6x -- because initial refusals are frequently overturned during later planning/tool-use steps. Category-level analyses identify which attack classes are most vulnerable and most readily deployable, while others exhibit large execution gaps. These findings motivate execution-aware defenses, code-contextual safety filters, and mechanisms that preserve refusal decisions throughout the agent's multi-step reasoning and tool use.




Abstract:Vision-driven field monitoring is central to digital agriculture, yet models built on general-domain pretrained backbones often fail to generalize across tasks, owing to the interaction of fine, variable canopy structures with fluctuating field conditions. We present FoMo4Wheat, one of the first crop-domain vision foundation model pretrained with self-supervision on ImAg4Wheat, the largest and most diverse wheat image dataset to date (2.5 million high-resolution images collected over a decade at 30 global sites, spanning >2,000 genotypes and >500 environmental conditions). This wheat-specific pretraining yields representations that are robust for wheat and transferable to other crops and weeds. Across ten in-field vision tasks at canopy and organ levels, FoMo4Wheat models consistently outperform state-of-the-art models pretrained on general-domain dataset. These results demonstrate the value of crop-specific foundation models for reliable in-field perception and chart a path toward a universal crop foundation model with cross-species and cross-task capabilities. FoMo4Wheat models and the ImAg4Wheat dataset are publicly available online: https://github.com/PheniX-Lab/FoMo4Wheat and https://huggingface.co/PheniX-Lab/FoMo4Wheat. The demonstration website is: https://fomo4wheat.phenix-lab.com/.
Abstract:Federated learning (FL) combined with local differential privacy (LDP) enables privacy-preserving model training across decentralized data sources. However, the decentralized data-management paradigm leaves LDPFL vulnerable to participants with malicious intent. The robustness of LDPFL protocols, particularly against model poisoning attacks (MPA), where adversaries inject malicious updates to disrupt global model convergence, remains insufficiently studied. In this paper, we propose a novel and extensible model poisoning attack framework tailored for LDPFL settings. Our approach is driven by the objective of maximizing the global training loss while adhering to local privacy constraints. To counter robust aggregation mechanisms such as Multi-Krum and trimmed mean, we develop adaptive attacks that embed carefully crafted constraints into a reverse training process, enabling evasion of these defenses. We evaluate our framework across three representative LDPFL protocols, three benchmark datasets, and two types of deep neural networks. Additionally, we investigate the influence of data heterogeneity and privacy budgets on attack effectiveness. Experimental results demonstrate that our adaptive attacks can significantly degrade the performance of the global model, revealing critical vulnerabilities and highlighting the need for more robust LDPFL defense strategies against MPA. Our code is available at https://github.com/ZiJW/LDPFL-Attack
Abstract:Recent advances in 3D Gaussian Splatting (3DGS) have demonstrated remarkable capabilities in real-time and photorealistic novel view synthesis. However, traditional 3DGS representations often struggle with large-scale scene management and efficient storage, particularly when dealing with complex environments or limited computational resources. To address these limitations, we introduce a novel perceive-sample-compress framework for 3D Gaussian Splatting. Specifically, we propose a scene perception compensation algorithm that intelligently refines Gaussian parameters at each level. This algorithm intelligently prioritizes visual importance for higher fidelity rendering in critical areas, while optimizing resource usage and improving overall visible quality. Furthermore, we propose a pyramid sampling representation to manage Gaussian primitives across hierarchical levels. Finally, to facilitate efficient storage of proposed hierarchical pyramid representations, we develop a Generalized Gaussian Mixed model compression algorithm to achieve significant compression ratios without sacrificing visual fidelity. The extensive experiments demonstrate that our method significantly improves memory efficiency and high visual quality while maintaining real-time rendering speed.
Abstract:Predicting time-series is of great importance in various scientific and engineering fields. However, in the context of limited and noisy data, accurately predicting dynamics of all variables in a high-dimensional system is a challenging task due to their nonlinearity and also complex interactions. Current methods including deep learning approaches often perform poorly for real-world systems under such circumstances. This study introduces the Delayformer framework for simultaneously predicting dynamics of all variables, by developing a novel multivariate spatiotemporal information (mvSTI) transformation that makes each observed variable into a delay-embedded state (vector) and further cross-learns those states from different variables. From dynamical systems viewpoint, Delayformer predicts system states rather than individual variables, thus theoretically and computationally overcoming such nonlinearity and cross-interaction problems. Specifically, it first utilizes a single shared Visual Transformer (ViT) encoder to cross-represent dynamical states from observed variables in a delay embedded form and then employs distinct linear decoders for predicting next states, i.e. equivalently predicting all original variables parallelly. By leveraging the theoretical foundations of delay embedding theory and the representational capabilities of Transformers, Delayformer outperforms current state-of-the-art methods in forecasting tasks on both synthetic and real-world datasets. Furthermore, the potential of Delayformer as a foundational time-series model is demonstrated through cross-domain forecasting tasks, highlighting its broad applicability across various scenarios.