Abstract:Modeling urban crime is an important yet challenging task that requires understanding the subtle visual, social, and cultural cues embedded in urban environments. Previous work has predominantly focused on rule-based agent-based modeling (ABM) and deep learning methods. ABMs offer interpretability of internal mechanisms but exhibit limited predictive accuracy.In contrast, deep learning methods are often effective in prediction but are less interpretable and require extensive training data. Moreover, both lines of work lack the cognitive flexibility to adapt to changing environments. Leveraging the capabilities of large language models (LLMs), we propose CrimeMind, a novel LLM-driven ABM framework for simulating urban crime within a multi-modal urban context.A key innovation of our design is the integration of the Routine Activity Theory (RAT) into the agentic workflow of CrimeMind, enabling it to process rich multi-modal urban features and reason about criminal behavior.However, RAT requires LLM agents to infer subtle cues in evaluating environmental safety as part of assessing guardianship, which can be challenging for LLMs. To address this, we collect a small-scale human-annotated dataset and align CrimeMind's perception with human judgment via a training-free textual gradient method.Experiments across four major U.S. cities demonstrate that CrimeMind outperforms both traditional ABMs and deep learning baselines in crime hotspot prediction and spatial distribution accuracy, achieving up to a 24% improvement over the strongest baseline.Furthermore, we conduct counterfactual simulations of external incidents and policy interventions and it successfully captures the expected changes in crime patterns, demonstrating its ability to reflect counterfactual scenarios.Overall, CrimeMind enables fine-grained modeling of individual behaviors and facilitates evaluation of real-world interventions.
Abstract:The rapid advancement and expanding applications of Audio Large Language Models (ALLMs) demand a rigorous understanding of their trustworthiness. However, systematic research on evaluating these models, particularly concerning risks unique to the audio modality, remains largely unexplored. Existing evaluation frameworks primarily focus on the text modality or address only a restricted set of safety dimensions, failing to adequately account for the unique characteristics and application scenarios inherent to the audio modality. We introduce AudioTrust-the first multifaceted trustworthiness evaluation framework and benchmark specifically designed for ALLMs. AudioTrust facilitates assessments across six key dimensions: fairness, hallucination, safety, privacy, robustness, and authentication. To comprehensively evaluate these dimensions, AudioTrust is structured around 18 distinct experimental setups. Its core is a meticulously constructed dataset of over 4,420 audio/text samples, drawn from real-world scenarios (e.g., daily conversations, emergency calls, voice assistant interactions), specifically designed to probe the multifaceted trustworthiness of ALLMs. For assessment, the benchmark carefully designs 9 audio-specific evaluation metrics, and we employ a large-scale automated pipeline for objective and scalable scoring of model outputs. Experimental results reveal the trustworthiness boundaries and limitations of current state-of-the-art open-source and closed-source ALLMs when confronted with various high-risk audio scenarios, offering valuable insights for the secure and trustworthy deployment of future audio models. Our platform and benchmark are available at https://github.com/JusperLee/AudioTrust.
Abstract:Federated causal inference enables multi-site treatment effect estimation without sharing individual-level data, offering a privacy-preserving solution for real-world evidence generation. However, data heterogeneity across sites, manifested in differences in covariate, treatment, and outcome, poses significant challenges for unbiased and efficient estimation. In this paper, we present a comprehensive review and theoretical analysis of federated causal effect estimation across both binary/continuous and time-to-event outcomes. We classify existing methods into weight-based strategies and optimization-based frameworks and further discuss extensions including personalized models, peer-to-peer communication, and model decomposition. For time-to-event outcomes, we examine federated Cox and Aalen-Johansen models, deriving asymptotic bias and variance under heterogeneity. Our analysis reveals that FedProx-style regularization achieves near-optimal bias-variance trade-offs compared to naive averaging and meta-analysis. We review related software tools and conclude by outlining opportunities, challenges, and future directions for scalable, fair, and trustworthy federated causal inference in distributed healthcare systems.
Abstract:Recently, natural language has been the primary medium for human-robot interaction. However, its inherent lack of spatial precision for robotic control introduces challenges such as ambiguity and verbosity. To address these limitations, we introduce the Robotic Visual Instruction (RoVI), a novel paradigm to guide robotic tasks through an object-centric, hand-drawn symbolic representation. RoVI effectively encodes spatial-temporal information into human-interpretable visual instructions through 2D sketches, utilizing arrows, circles, colors, and numbers to direct 3D robotic manipulation. To enable robots to understand RoVI better and generate precise actions based on RoVI, we present Visual Instruction Embodied Workflow (VIEW), a pipeline formulated for RoVI-conditioned policies. This approach leverages Vision-Language Models (VLMs) to interpret RoVI inputs, decode spatial and temporal constraints from 2D pixel space via keypoint extraction, and then transform them into executable 3D action sequences. We additionally curate a specialized dataset of 15K instances to fine-tune small VLMs for edge deployment, enabling them to effectively learn RoVI capabilities. Our approach is rigorously validated across 11 novel tasks in both real and simulated environments, demonstrating significant generalization capability. Notably, VIEW achieves an 87.5% success rate in real-world scenarios involving unseen tasks that feature multi-step actions, with disturbances, and trajectory-following requirements. Code and Datasets in this paper will be released soon.
Abstract:The growing adoption of artificial intelligence (AI) has amplified concerns about trustworthiness, including integrity, privacy, robustness, and bias. To assess and attribute these threats, we propose ConceptLens, a generic framework that leverages pre-trained multimodal models to identify the root causes of integrity threats by analyzing Concept Shift in probing samples. ConceptLens demonstrates strong detection performance for vanilla data poisoning attacks and uncovers vulnerabilities to bias injection, such as the generation of covert advertisements through malicious concept shifts. It identifies privacy risks in unaltered but high-risk samples, filters them before training, and provides insights into model weaknesses arising from incomplete or imbalanced training data. Additionally, at the model level, it attributes concepts that the target model is overly dependent on, identifies misleading concepts, and explains how disrupting key concepts negatively impacts the model. Furthermore, it uncovers sociological biases in generative content, revealing disparities across sociological contexts. Strikingly, ConceptLens reveals how safe training and inference data can be unintentionally and easily exploited, potentially undermining safety alignment. Our study informs actionable insights to breed trust in AI systems, thereby speeding adoption and driving greater innovation.
Abstract:Large language models (LLMs) have dramatically advanced machine learning research including natural language processing, computer vision, data mining, etc., yet they still exhibit critical limitations in reasoning, factual consistency, and interpretability. In this paper, we introduce a novel learning paradigm -- Modular Machine Learning (MML) -- as an essential approach toward new-generation LLMs. MML decomposes the complex structure of LLMs into three interdependent components: modular representation, modular model, and modular reasoning, aiming to enhance LLMs' capability of counterfactual reasoning, mitigating hallucinations, as well as promoting fairness, safety, and transparency. Specifically, the proposed MML paradigm can: i) clarify the internal working mechanism of LLMs through the disentanglement of semantic components; ii) allow for flexible and task-adaptive model design; iii) enable interpretable and logic-driven decision-making process. We present a feasible implementation of MML-based LLMs via leveraging advanced techniques such as disentangled representation learning, neural architecture search and neuro-symbolic learning. We critically identify key challenges, such as the integration of continuous neural and discrete symbolic processes, joint optimization, and computational scalability, present promising future research directions that deserve further exploration. Ultimately, the integration of the MML paradigm with LLMs has the potential to bridge the gap between statistical (deep) learning and formal (logical) reasoning, thereby paving the way for robust, adaptable, and trustworthy AI systems across a wide range of real-world applications.
Abstract:The Base-New Trade-off (BNT) problem universally exists during the optimization of CLIP-based prompt tuning, where continuous fine-tuning on base (target) classes leads to a simultaneous decrease of generalization ability on new (unseen) classes. Existing approaches attempt to regulate the prompt tuning process to balance BNT by appending constraints. However, imposed on the same target prompt, these constraints fail to fully avert the mutual exclusivity between the optimization directions for base and new. As a novel solution to this challenge, we propose the plug-and-play Dual-Prompt Collaboration (DPC) framework, the first that decoupling the optimization processes of base and new tasks at the prompt level. Specifically, we clone a learnable parallel prompt based on the backbone prompt, and introduce a variable Weighting-Decoupling framework to independently control the optimization directions of dual prompts specific to base or new tasks, thus avoiding the conflict in generalization. Meanwhile, we propose a Dynamic Hard Negative Optimizer, utilizing dual prompts to construct a more challenging optimization task on base classes for enhancement. For interpretability, we prove the feature channel invariance of the prompt vector during the optimization process, providing theoretical support for the Weighting-Decoupling of DPC. Extensive experiments on multiple backbones demonstrate that DPC can significantly improve base performance without introducing any external knowledge beyond the base classes, while maintaining generalization to new classes. Code is available at: https://github.com/JREion/DPC.
Abstract:Manipulating deformable objects like cloth is challenging due to their complex dynamics, near-infinite degrees of freedom, and frequent self-occlusions, which complicate state estimation and dynamics modeling. Prior work has struggled with robust cloth state estimation, while dynamics models, primarily based on Graph Neural Networks (GNNs), are limited by their locality. Inspired by recent advances in generative models, we hypothesize that these expressive models can effectively capture intricate cloth configurations and deformation patterns from data. Building on this insight, we propose a diffusion-based generative approach for both perception and dynamics modeling. Specifically, we formulate state estimation as reconstructing the full cloth state from sparse RGB-D observations conditioned on a canonical cloth mesh and dynamics modeling as predicting future states given the current state and robot actions. Leveraging a transformer-based diffusion model, our method achieves high-fidelity state reconstruction while reducing long-horizon dynamics prediction errors by an order of magnitude compared to GNN-based approaches. Integrated with model-predictive control (MPC), our framework successfully executes cloth folding on a real robotic system, demonstrating the potential of generative models for manipulation tasks with partial observability and complex dynamics.
Abstract:Index recommendation is essential for improving query performance in database management systems (DBMSs) through creating an optimal set of indexes under specific constraints. Traditional methods, such as heuristic and learning-based approaches, are effective but face challenges like lengthy recommendation time, resource-intensive training, and poor generalization across different workloads and database schemas. To address these issues, we propose LLMIdxAdvis, a resource-efficient index advisor that uses large language models (LLMs) without extensive fine-tuning. LLMIdxAdvis frames index recommendation as a sequence-to-sequence task, taking target workload, storage constraint, and corresponding database environment as input, and directly outputting recommended indexes. It constructs a high-quality demonstration pool offline, using GPT-4-Turbo to synthesize diverse SQL queries and applying integrated heuristic methods to collect both default and refined labels. During recommendation, these demonstrations are ranked to inject database expertise via in-context learning. Additionally, LLMIdxAdvis extracts workload features involving specific column statistical information to strengthen LLM's understanding, and introduces a novel inference scaling strategy combining vertical scaling (via ''Index-Guided Major Voting'' and Best-of-N) and horizontal scaling (through iterative ''self-optimization'' with database feedback) to enhance reliability. Experiments on 3 OLAP and 2 real-world benchmarks reveal that LLMIdxAdvis delivers competitive index recommendation with reduced runtime, and generalizes effectively across different workloads and database schemas.
Abstract:Large vision-language models (LVLMs) have demonstrated remarkable achievements, yet the generation of non-factual responses remains prevalent in fact-seeking question answering (QA). Current multimodal fact-seeking benchmarks primarily focus on comparing model outputs to ground truth answers, providing limited insights into the performance of modality-specific modules. To bridge this gap, we introduce VisualSimpleQA, a multimodal fact-seeking benchmark with two key features. First, it enables streamlined and decoupled evaluation of LVLMs in visual and linguistic modalities. Second, it incorporates well-defined difficulty criteria to guide human annotation and facilitates the extraction of a challenging subset, VisualSimpleQA-hard. Experiments on 15 LVLMs show that even state-of-the-art models such as GPT-4o achieve merely 60%+ correctness in multimodal fact-seeking QA on VisualSimpleQA and 30%+ on VisualSimpleQA-hard. Furthermore, the decoupled evaluation across these models highlights substantial opportunities for improvement in both visual and linguistic modules. The dataset is available at https://huggingface.co/datasets/WYLing/VisualSimpleQA.