Abstract:Robust local navigation in unstructured and dynamic environments remains a significant challenge for humanoid robots, requiring a delicate balance between long-range navigation targets and immediate motion stability. In this paper, we propose FocusNav, a spatial selective attention framework that adaptively modulates the robot's perceptual field based on navigational intent and real-time stability. FocusNav features a Waypoint-Guided Spatial Cross-Attention (WGSCA) mechanism that anchors environmental feature aggregation to a sequence of predicted collision-free waypoints, ensuring task-relevant perception along the planned trajectory. To enhance robustness in complex terrains, the Stability-Aware Selective Gating (SASG) module autonomously truncates distal information when detecting instability, compelling the policy to prioritize immediate foothold safety. Extensive experiments on the Unitree G1 humanoid robot demonstrate that FocusNav significantly improves navigation success rates in challenging scenarios, outperforming baselines in both collision avoidance and motion stability, achieving robust navigation in dynamic and complex environments.
Abstract:The deployment of Machine-Generated Text (MGT) detection systems necessitates processing sensitive user data, creating a fundamental conflict between authorship verification and privacy preservation. Standard anonymization techniques often disrupt linguistic fluency, while rigorous Differential Privacy (DP) mechanisms typically degrade the statistical signals required for accurate detection. To resolve this dilemma, we propose \textbf{DP-MGTD}, a framework incorporating an Adaptive Differentially Private Entity Sanitization algorithm. Our approach utilizes a two-stage mechanism that performs noisy frequency estimation and dynamically calibrates privacy budgets, applying Laplace and Exponential mechanisms to numerical and textual entities respectively. Crucially, we identify a counter-intuitive phenomenon where the application of DP noise amplifies the distinguishability between human and machine text by exposing distinct sensitivity patterns to perturbation. Extensive experiments on the MGTBench-2.0 dataset show that our method achieves near-perfect detection accuracy, significantly outperforming non-private baselines while satisfying strict privacy guarantees.
Abstract:Legal judgment generation is a critical task in legal intelligence. However, existing research in legal judgment generation has predominantly focused on first-instance trials, relying on static fact-to-verdict mappings while neglecting the dialectical nature of appellate (second-instance) review. To address this, we introduce AppellateGen, a benchmark for second-instance legal judgment generation comprising 7,351 case pairs. The task requires models to draft legally binding judgments by reasoning over the initial verdict and evidentiary updates, thereby modeling the causal dependency between trial stages. We further propose a judicial Standard Operating Procedure (SOP)-based Legal Multi-Agent System (SLMAS) to simulate judicial workflows, which decomposes the generation process into discrete stages of issue identification, retrieval, and drafting. Experimental results indicate that while SLMAS improves logical consistency, the complexity of appellate reasoning remains a substantial challenge for current LLMs. The dataset and code are publicly available at: https://anonymous.4open.science/r/AppellateGen-5763.
Abstract:Efficient trajectory planning in off-road terrains presents a formidable challenge for autonomous vehicles, often necessitating complex multi-step pipelines. However, traditional approaches exhibit limited adaptability in dynamic environments. To address these limitations, this paper proposes OFF-EMMA, a novel end-to-end multimodal framework designed to overcome the deficiencies of insufficient spatial perception and unstable reasoning in visual-language-action (VLA) models for off-road autonomous driving scenarios. The framework explicitly annotates input images through the design of a visual prompt block and introduces a chain-of-thought with self-consistency (COT-SC) reasoning strategy to enhance the accuracy and robustness of trajectory planning. The visual prompt block utilizes semantic segmentation masks as visual prompts, enhancing the spatial understanding ability of pre-trained visual-language models for complex terrains. The COT- SC strategy effectively mitigates the error impact of outliers on planning performance through a multi-path reasoning mechanism. Experimental results on the RELLIS-3D off-road dataset demonstrate that OFF-EMMA significantly outperforms existing methods, reducing the average L2 error of the Qwen backbone model by 13.3% and decreasing the failure rate from 16.52% to 6.56%.
Abstract:Language Model (LM)-based generative modeling has emerged as a promising direction for TSE, offering potential for improved generalization and high-fidelity speech. We present GenTSE, a two-stage decoder-only generative LM approach for TSE: Stage-1 predicts coarse semantic tokens, and Stage-2 generates fine acoustic tokens. Separating semantics and acoustics stabilizes decoding and yields more faithful, content-aligned target speech. Both stages use continuous SSL or codec embeddings, offering richer context than discretized-prompt methods. To reduce exposure bias, we employ a Frozen-LM Conditioning training strategy that conditions the LMs on predicted tokens from earlier checkpoints to reduce the gap between teacher-forcing training and autoregressive inference. We further employ DPO to better align outputs with human perceptual preferences. Experiments on Libri2Mix show that GenTSE surpasses previous LM-based systems in speech quality, intelligibility, and speaker consistency.
Abstract:Machine learning models constitute valuable intellectual property, yet remain vulnerable to model extraction attacks (MEA), where adversaries replicate their functionality through black-box queries. Model watermarking counters MEAs by embedding forensic markers for ownership verification. Current black-box watermarks prioritize MEA survival through representation entanglement, yet inadequately explore resilience against sequential MEAs and removal attacks. Our study reveals that this risk is underestimated because existing removal methods are weakened by entanglement. To address this gap, we propose Watermark Removal attacK (WRK), which circumvents entanglement constraints by exploiting decision boundaries shaped by prevailing sample-level watermark artifacts. WRK effectively reduces watermark success rates by at least 88.79% across existing watermarking benchmarks. For robust protection, we propose Class-Feature Watermarks (CFW), which improve resilience by leveraging class-level artifacts. CFW constructs a synthetic class using out-of-domain samples, eliminating vulnerable decision boundaries between original domain samples and their artifact-modified counterparts (watermark samples). CFW concurrently optimizes both MEA transferability and post-MEA stability. Experiments across multiple domains show that CFW consistently outperforms prior methods in resilience, maintaining a watermark success rate of at least 70.15% in extracted models even under the combined MEA and WRK distortion, while preserving the utility of protected models.
Abstract:Leveraging Large Language Models (LLMs) for social simulation is a frontier in computational social science. Understanding the social logics these agents embody is critical to this attempt. However, existing research has primarily focused on cooperation in small-scale, task-oriented games, overlooking how altruism, which means sacrificing self-interest for collective benefit, emerges in large-scale agent societies. To address this gap, we introduce a Schelling-variant urban migration model that creates a social dilemma, compelling over 200 LLM agents to navigate an explicit conflict between egoistic (personal utility) and altruistic (system utility) goals. Our central finding is a fundamental difference in the social tendencies of LLMs. We identify two distinct archetypes: "Adaptive Egoists", which default to prioritizing self-interest but whose altruistic behaviors significantly increase under the influence of a social norm-setting message board; and "Altruistic Optimizers", which exhibit an inherent altruistic logic, consistently prioritizing collective benefit even at a direct cost to themselves. Furthermore, to qualitatively analyze the cognitive underpinnings of these decisions, we introduce a method inspired by Grounded Theory to systematically code agent reasoning. In summary, this research provides the first evidence of intrinsic heterogeneity in the egoistic and altruistic tendencies of different LLMs. We propose that for social simulation, model selection is not merely a matter of choosing reasoning capability, but of choosing an intrinsic social action logic. While "Adaptive Egoists" may offer a more suitable choice for simulating complex human societies, "Altruistic Optimizers" are better suited for modeling idealized pro-social actors or scenarios where collective welfare is the primary consideration.




Abstract:In this paper, we introduce a novel framework following an upstream-downstream paradigm to construct user and item (Pin) embeddings from diverse data sources, which are essential for Pinterest to deliver personalized Pins and ads effectively. Our upstream models are trained on extensive data sources featuring varied signals, utilizing complex architectures to capture intricate relationships between users and Pins on Pinterest. To ensure scalability of the upstream models, entity embeddings are learned, and regularly refreshed, rather than real-time computation, allowing for asynchronous interaction between the upstream and downstream models. These embeddings are then integrated as input features in numerous downstream tasks, including ad retrieval and ranking models for CTR and CVR predictions. We demonstrate that our framework achieves notable performance improvements in both offline and online settings across various downstream tasks. This framework has been deployed in Pinterest's production ad ranking systems, resulting in significant gains in online metrics.
Abstract:Machine unlearning enables the removal of specific data from ML models to uphold the right to be forgotten. While approximate unlearning algorithms offer efficient alternatives to full retraining, this work reveals that they fail to adequately protect the privacy of unlearned data. In particular, these algorithms introduce implicit residuals which facilitate privacy attacks targeting at unlearned data. We observe that these residuals persist regardless of model architectures, parameters, and unlearning algorithms, exposing a new attack surface beyond conventional output-based leakage. Based on this insight, we propose the Reminiscence Attack (ReA), which amplifies the correlation between residuals and membership privacy through targeted fine-tuning processes. ReA achieves up to 1.90x and 1.12x higher accuracy than prior attacks when inferring class-wise and sample-wise membership, respectively. To mitigate such residual-induced privacy risk, we develop a dual-phase approximate unlearning framework that first eliminates deep-layer unlearned data traces and then enforces convergence stability to prevent models from "pseudo-convergence", where their outputs are similar to retrained models but still preserve unlearned residuals. Our framework works for both classification and generation tasks. Experimental evaluations confirm that our approach maintains high unlearning efficacy, while reducing the adaptive privacy attack accuracy to nearly random guess, at the computational cost of 2-12% of full retraining from scratch.




Abstract:We introduce Kimi K2, a Mixture-of-Experts (MoE) large language model with 32 billion activated parameters and 1 trillion total parameters. We propose the MuonClip optimizer, which improves upon Muon with a novel QK-clip technique to address training instability while enjoying the advanced token efficiency of Muon. Based on MuonClip, K2 was pre-trained on 15.5 trillion tokens with zero loss spike. During post-training, K2 undergoes a multi-stage post-training process, highlighted by a large-scale agentic data synthesis pipeline and a joint reinforcement learning (RL) stage, where the model improves its capabilities through interactions with real and synthetic environments. Kimi K2 achieves state-of-the-art performance among open-source non-thinking models, with strengths in agentic capabilities. Notably, K2 obtains 66.1 on Tau2-Bench, 76.5 on ACEBench (En), 65.8 on SWE-Bench Verified, and 47.3 on SWE-Bench Multilingual -- surpassing most open and closed-sourced baselines in non-thinking settings. It also exhibits strong capabilities in coding, mathematics, and reasoning tasks, with a score of 53.7 on LiveCodeBench v6, 49.5 on AIME 2025, 75.1 on GPQA-Diamond, and 27.1 on OJBench, all without extended thinking. These results position Kimi K2 as one of the most capable open-source large language models to date, particularly in software engineering and agentic tasks. We release our base and post-trained model checkpoints to facilitate future research and applications of agentic intelligence.