Abstract:Accurate time-series forecasting is increasingly critical for planning and operations in low-carbon power systems. Emerging time-series large language models (TS-LLMs) now deliver this capability at scale, requiring no task-specific retraining, and are quickly becoming essential components within the Internet-of-Energy (IoE) ecosystem. However, their real-world deployment is complicated by a critical vulnerability: adversarial examples (AEs). Detecting these AEs is challenging because (i) adversarial perturbations are optimized across the entire input sequence and exploit global temporal dependencies, which renders local detection methods ineffective, and (ii) unlike traditional forecasting models with fixed input dimensions, TS-LLMs accept sequences of variable length, increasing variability that complicates detection. To address these challenges, we propose a plug-in detection framework that capitalizes on the TS-LLM's own variable-length input capability. Our method uses sampling-induced divergence as a detection signal. Given an input sequence, we generate multiple shortened variants and detect AEs by measuring the consistency of their forecasts: Benign sequences tend to produce stable predictions under sampling, whereas adversarial sequences show low forecast similarity, because perturbations optimized for a full-length sequence do not transfer reliably to shorter, differently-structured subsamples. We evaluate our approach on three representative TS-LLMs (TimeGPT, TimesFM, and TimeLLM) across three energy datasets: ETTh2 (Electricity Transformer Temperature), NI (Hourly Energy Consumption), and Consumption (Hourly Electricity Consumption and Production). Empirical results confirm strong and robust detection performance across both black-box and white-box attack scenarios, highlighting its practicality as a reliable safeguard for TS-LLM forecasting in real-world energy systems.
Abstract:Recent advancements in speech synthesis technology have enriched our daily lives, with high-quality and human-like audio widely adopted across real-world applications. However, malicious exploitation like voice-cloning fraud poses severe security risks. Existing defense techniques struggle to address the production large language model (LLM)-based speech synthesis. While previous studies have considered the protection for fine-tuning synthesizers, they assume manually annotated transcripts. Given the labor intensity of manual annotation, end-to-end (E2E) systems leveraging automatic speech recognition (ASR) to generate transcripts are becoming increasingly prevalent, e.g., voice cloning via commercial APIs. Therefore, this E2E speech synthesis also requires new security mechanisms. To tackle these challenges, we propose E2E-VGuard, a proactive defense framework for two emerging threats: (1) production LLM-based speech synthesis, and (2) the novel attack arising from ASR-driven E2E scenarios. Specifically, we employ the encoder ensemble with a feature extractor to protect timbre, while ASR-targeted adversarial examples disrupt pronunciation. Moreover, we incorporate the psychoacoustic model to ensure perturbative imperceptibility. For a comprehensive evaluation, we test 16 open-source synthesizers and 3 commercial APIs across Chinese and English datasets, confirming E2E-VGuard's effectiveness in timbre and pronunciation protection. Real-world deployment validation is also conducted. Our code and demo page are available at https://wxzyd123.github.io/e2e-vguard/.
Abstract:Recent advances in Audio-Language Models (ALMs) have significantly improved multimodal understanding capabilities. However, the introduction of the audio modality also brings new and unique vulnerability vectors. Previous studies have proposed jailbreak attacks that specifically target ALMs, revealing that defenses directly transferred from traditional audio adversarial attacks or text-based Large Language Model (LLM) jailbreaks are largely ineffective against these ALM-specific threats. To address this issue, we propose ALMGuard, the first defense framework tailored to ALMs. Based on the assumption that safety-aligned shortcuts naturally exist in ALMs, we design a method to identify universal Shortcut Activation Perturbations (SAPs) that serve as triggers that activate the safety shortcuts to safeguard ALMs at inference time. To better sift out effective triggers while preserving the model's utility on benign tasks, we further propose Mel-Gradient Sparse Mask (M-GSM), which restricts perturbations to Mel-frequency bins that are sensitive to jailbreaks but insensitive to speech understanding. Both theoretical analyses and empirical results demonstrate the robustness of our method against both seen and unseen attacks. Overall, \MethodName reduces the average success rate of advanced ALM-specific jailbreak attacks to 4.6% across four models, while maintaining comparable utility on benign benchmarks, establishing it as the new state of the art. Our code and data are available at https://github.com/WeifeiJin/ALMGuard.
Abstract:The growing adoption of artificial intelligence (AI) has amplified concerns about trustworthiness, including integrity, privacy, robustness, and bias. To assess and attribute these threats, we propose ConceptLens, a generic framework that leverages pre-trained multimodal models to identify the root causes of integrity threats by analyzing Concept Shift in probing samples. ConceptLens demonstrates strong detection performance for vanilla data poisoning attacks and uncovers vulnerabilities to bias injection, such as the generation of covert advertisements through malicious concept shifts. It identifies privacy risks in unaltered but high-risk samples, filters them before training, and provides insights into model weaknesses arising from incomplete or imbalanced training data. Additionally, at the model level, it attributes concepts that the target model is overly dependent on, identifies misleading concepts, and explains how disrupting key concepts negatively impacts the model. Furthermore, it uncovers sociological biases in generative content, revealing disparities across sociological contexts. Strikingly, ConceptLens reveals how safe training and inference data can be unintentionally and easily exploited, potentially undermining safety alignment. Our study informs actionable insights to breed trust in AI systems, thereby speeding adoption and driving greater innovation.
Abstract:The widespread application of automatic speech recognition (ASR) supports large-scale voice surveillance, raising concerns about privacy among users. In this paper, we concentrate on using adversarial examples to mitigate unauthorized disclosure of speech privacy thwarted by potential eavesdroppers in speech communications. While audio adversarial examples have demonstrated the capability to mislead ASR models or evade ASR surveillance, they are typically constructed through time-intensive offline optimization, restricting their practicality in real-time voice communication. Recent work overcame this limitation by generating universal adversarial perturbations (UAPs) and enhancing their transferability for black-box scenarios. However, they introduced excessive noise that significantly degrades audio quality and affects human perception, thereby limiting their effectiveness in practical scenarios. To address this limitation and protect live users' speech against ASR systems, we propose a novel framework, AudioShield. Central to this framework is the concept of Transferable Universal Adversarial Perturbations in the Latent Space (LS-TUAP). By transferring the perturbations to the latent space, the audio quality is preserved to a large extent. Additionally, we propose target feature adaptation to enhance the transferability of UAPs by embedding target text features into the perturbations. Comprehensive evaluation on four commercial ASR APIs (Google, Amazon, iFlytek, and Alibaba), three voice assistants, two LLM-powered ASR and one NN-based ASR demonstrates the protection superiority of AudioShield over existing competitors, and both objective and subjective evaluations indicate that AudioShield significantly improves the audio quality. Moreover, AudioShield also shows high effectiveness in real-time end-to-end scenarios, and demonstrates strong resilience against adaptive countermeasures.
Abstract:For the first time, we unveil discernible temporal (or historical) trajectory imprints resulting from adversarial example (AE) attacks. Standing in contrast to existing studies all focusing on spatial (or static) imprints within the targeted underlying victim models, we present a fresh temporal paradigm for understanding these attacks. Of paramount discovery is that these imprints are encapsulated within a single loss metric, spanning universally across diverse tasks such as classification and regression, and modalities including image, text, and audio. Recognizing the distinct nature of loss between adversarial and clean examples, we exploit this temporal imprint for AE detection by proposing TRAIT (TRaceable Adversarial temporal trajectory ImprinTs). TRAIT operates under minimal assumptions without prior knowledge of attacks, thereby framing the detection challenge as a one-class classification problem. However, detecting AEs is still challenged by significant overlaps between the constructed synthetic losses of adversarial and clean examples due to the absence of ground truth for incoming inputs. TRAIT addresses this challenge by converting the synthetic loss into a spectrum signature, using the technique of Fast Fourier Transform to highlight the discrepancies, drawing inspiration from the temporal nature of the imprints, analogous to time-series signals. Across 12 AE attacks including SMACK (USENIX Sec'2023), TRAIT demonstrates consistent outstanding performance across comprehensively evaluated modalities, tasks, datasets, and model architectures. In all scenarios, TRAIT achieves an AE detection accuracy exceeding 97%, often around 99%, while maintaining a false rejection rate of 1%. TRAIT remains effective under the formulated strong adaptive attacks.




Abstract:Deep reinforcement learning (DRL) has gained widespread adoption in control and decision-making tasks due to its strong performance in dynamic environments. However, DRL agents are vulnerable to noisy observations and adversarial attacks, and concerns about the adversarial robustness of DRL systems have emerged. Recent efforts have focused on addressing these robustness issues by establishing rigorous theoretical guarantees for the returns achieved by DRL agents in adversarial settings. Among these approaches, policy smoothing has proven to be an effective and scalable method for certifying the robustness of DRL agents. Nevertheless, existing certifiably robust DRL relies on policies trained with simple Gaussian augmentations, resulting in a suboptimal trade-off between certified robustness and certified return. To address this issue, we introduce a novel paradigm dubbed \texttt{C}ertified-r\texttt{A}dius-\texttt{M}aximizing \texttt{P}olicy (\texttt{CAMP}) training. \texttt{CAMP} is designed to enhance DRL policies, achieving better utility without compromising provable robustness. By leveraging the insight that the global certified radius can be derived from local certified radii based on training-time statistics, \texttt{CAMP} formulates a surrogate loss related to the local certified radius and optimizes the policy guided by this surrogate loss. We also introduce \textit{policy imitation} as a novel technique to stabilize \texttt{CAMP} training. Experimental results demonstrate that \texttt{CAMP} significantly improves the robustness-return trade-off across various tasks. Based on the results, \texttt{CAMP} can achieve up to twice the certified expected return compared to that of baselines. Our code is available at https://github.com/NeuralSec/camp-robust-rl.




Abstract:AI systems, in particular with deep learning techniques, have demonstrated superior performance for various real-world applications. Given the need for tailored optimization in specific scenarios, as well as the concerns related to the exploits of subsurface vulnerabilities, a more comprehensive and in-depth testing AI system becomes a pivotal topic. We have seen the emergence of testing tools in real-world applications that aim to expand testing capabilities. However, they often concentrate on ad-hoc tasks, rendering them unsuitable for simultaneously testing multiple aspects or components. Furthermore, trustworthiness issues arising from adversarial attacks and the challenge of interpreting deep learning models pose new challenges for developing more comprehensive and in-depth AI system testing tools. In this study, we design and implement a testing tool, \tool, to comprehensively and effectively evaluate AI systems. The tool extensively assesses multiple measurements towards adversarial robustness, model interpretability, and performs neuron analysis. The feasibility of the proposed testing tool is thoroughly validated across various modalities, including image classification, object detection, and text classification. Extensive experiments demonstrate that \tool is the state-of-the-art tool for a comprehensive assessment of the robustness and trustworthiness of AI systems. Our research sheds light on a general solution for AI systems testing landscape.




Abstract:Differential privacy (DP) is the de facto privacy standard against privacy leakage attacks, including many recently discovered ones against large language models (LLMs). However, we discovered that LLMs could reconstruct the altered/removed privacy from given DP-sanitized prompts. We propose two attacks (black-box and white-box) based on the accessibility to LLMs and show that LLMs could connect the pair of DP-sanitized text and the corresponding private training data of LLMs by giving sample text pairs as instructions (in the black-box attacks) or fine-tuning data (in the white-box attacks). To illustrate our findings, we conduct comprehensive experiments on modern LLMs (e.g., LLaMA-2, LLaMA-3, ChatGPT-3.5, ChatGPT-4, ChatGPT-4o, Claude-3, Claude-3.5, OPT, GPT-Neo, GPT-J, Gemma-2, and Pythia) using commonly used datasets (such as WikiMIA, Pile-CC, and Pile-Wiki) against both word-level and sentence-level DP. The experimental results show promising recovery rates, e.g., the black-box attacks against the word-level DP over WikiMIA dataset gave 72.18% on LLaMA-2 (70B), 82.39% on LLaMA-3 (70B), 75.35% on Gemma-2, 91.2% on ChatGPT-4o, and 94.01% on Claude-3.5 (Sonnet). More urgently, this study indicates that these well-known LLMs have emerged as a new security risk for existing DP text sanitization approaches in the current environment.




Abstract:The right to be forgotten mandates that machine learning models enable the erasure of a data owner's data and information from a trained model. Removing data from the dataset alone is inadequate, as machine learning models can memorize information from the training data, increasing the potential privacy risk to users. To address this, multiple machine unlearning techniques have been developed and deployed. Among them, approximate unlearning is a popular solution, but recent studies report that its unlearning effectiveness is not fully guaranteed. Another approach, exact unlearning, tackles this issue by discarding the data and retraining the model from scratch, but at the cost of considerable computational and memory resources. However, not all devices have the capability to perform such retraining. In numerous machine learning applications, such as edge devices, Internet-of-Things (IoT), mobile devices, and satellites, resources are constrained, posing challenges for deploying existing exact unlearning methods. In this study, we propose a Constraint-aware Adaptive Exact Unlearning System at the network Edge (CAUSE), an approach to enabling exact unlearning on resource-constrained devices. Aiming to minimize the retrain overhead by storing sub-models on the resource-constrained device, CAUSE innovatively applies a Fibonacci-based replacement strategy and updates the number of shards adaptively in the user-based data partition process. To further improve the effectiveness of memory usage, CAUSE leverages the advantage of model pruning to save memory via compression with minimal accuracy sacrifice. The experimental results demonstrate that CAUSE significantly outperforms other representative systems in realizing exact unlearning on the resource-constrained device by 9.23%-80.86%, 66.21%-83.46%, and 5.26%-194.13% in terms of unlearning speed, energy consumption, and accuracy.