Abstract:Despite numerous attempts to solve the issue of hallucination since the inception of neural language models, it remains a problem in even frontier large language models today. Why is this the case? We walk through definitions of hallucination used in the literature from a historical perspective up to the current day, and fold them into a single definition of hallucination, wherein different prior definitions focus on different aspects of our definition. At its core, we argue that hallucination is simply inaccurate (internal) world modeling, in a form where it is observable to the user (e.g., stating a fact which contradicts a knowledge base, or producing a summary which contradicts a known source). By varying the reference world model as well as the knowledge conflict policy (e.g., knowledge base vs. in-context), we arrive at the different existing definitions of hallucination present in the literature. We argue that this unified view is useful because it forces evaluations to make clear their assumed "world" or source of truth, clarifies what should and should not be called hallucination (as opposed to planning or reward/incentive-related errors), and provides a common language to compare benchmarks and mitigation techniques. Building on this definition, we outline plans for a family of benchmarks in which hallucinations are defined as mismatches with synthetic but fully specified world models in different environments, and sketch out how these benchmarks can use such settings to stress-test and improve the world modeling components of language models.
Abstract:Recently, natural language has been the primary medium for human-robot interaction. However, its inherent lack of spatial precision for robotic control introduces challenges such as ambiguity and verbosity. To address these limitations, we introduce the Robotic Visual Instruction (RoVI), a novel paradigm to guide robotic tasks through an object-centric, hand-drawn symbolic representation. RoVI effectively encodes spatial-temporal information into human-interpretable visual instructions through 2D sketches, utilizing arrows, circles, colors, and numbers to direct 3D robotic manipulation. To enable robots to understand RoVI better and generate precise actions based on RoVI, we present Visual Instruction Embodied Workflow (VIEW), a pipeline formulated for RoVI-conditioned policies. This approach leverages Vision-Language Models (VLMs) to interpret RoVI inputs, decode spatial and temporal constraints from 2D pixel space via keypoint extraction, and then transform them into executable 3D action sequences. We additionally curate a specialized dataset of 15K instances to fine-tune small VLMs for edge deployment, enabling them to effectively learn RoVI capabilities. Our approach is rigorously validated across 11 novel tasks in both real and simulated environments, demonstrating significant generalization capability. Notably, VIEW achieves an 87.5% success rate in real-world scenarios involving unseen tasks that feature multi-step actions, with disturbances, and trajectory-following requirements. Code and Datasets in this paper will be released soon.