Abstract:In this paper, we investigate a reconfigurable intelligent surface (RIS)-assisted integrated sensing and communications (ISAC) framework equipped with multiple Rydberg atomic receiver (RAR)-aided users. By leveraging the reference-assisted reception mechanism of RARs, we develop a unified signal model that jointly captures downlink multi-user communication with RARs and monostatic radar sensing. To explicitly balance communication performance and sensing accuracy, we formulate a Cramer-Rao bound (CRB)-constrained utility maximization problem. To address these challenges, we propose a joint optimization framework that combines fractional programming (FP), majorization-minimization (MM), and the alternating direction method of multipliers (ADMM). Simulation results demonstrate that the proposed framework consistently outperforms the conventional approach over a wide range of system environments, thereby highlighting the importance of the proposed framework in unlocking the potential of RARs for 6G.
Abstract:Fluid antenna system (FAS) represents the concept of treating antenna as a reconfigurable physical-layer resource to broaden system design and network optimization and inspire next-generation reconfigurable antennas. FAS can unleash new degree of freedom (DoF) via antenna reconfigurations for novel spatial diversity. Reconfigurable intelligent surfaces (RISs) on the other hand can reshape wireless propagation environments but often face limitations from double path-loss and minimal signal processing capability when operating independently. This article envisions a transformative FAS-RIS integrated architecture for future smart city networks, uniting the adaptability of FAS with the environmental control of RIS. The proposed framework has five key applications: FAS-enabled base stations (BSs) for large-scale beamforming, FAS-equipped user devices with finest spatial diversity, and three novel RIS paradigms -- fluid RIS (FRIS) with reconfigurable elements, FAS-embedded RIS as active relays, and enormous FAS (E-FAS) exploiting surface waves on facades to re-establish line-of-sight (LoS) communication. A two-timescale control mechanism coordinates network-level beamforming with rapid, device-level adaptation. Applications spanning from simultaneous wireless information and power transfer (SWIPT) to integrated sensing and communications (ISAC), with challenges in co-design, channel modeling, and optimization, are discussed. This article concludes with simulation results demonstrating the robustness and effectiveness of the FAS-RIS system.
Abstract:Semantic communication systems often use an end-to-end neural network to map input data into continuous symbols. These symbols, which are essentially neural network features, usually have fixed dimensions and heavy-tailed distributions. However, due to the end-to-end training nature of the neural network encoder, the underlying reason for the symbol distribution remains underexplored. We propose a new explanation for the semantic symbol distribution: an inherent trade-off between source coding and communications. Specifically, the encoder balances two objectives: allocating power for minimum \emph{effective codelength} (for source coding) and maximizing mutual information (for communications). We formalize this trade-off via an information-theoretic optimization framework, which yields a Student's $t$-distribution as the resulting symbol distribution. Through extensive studies on image-based semantic systems, we find that our formulation models the learned symbols and predicts how the symbol distribution's shape parameter changes with respect to (i) the use of variable-length coding and (ii) the dataset's entropy variability. Furthermore, we demonstrate how introducing a regularizer that enforces a target symbol distribution, which guides the encoder towards a target prior (e.g., Gaussian), improves training convergence and supports our hypothesis.




Abstract:The evolution of radio access networks (RANs) toward virtualization and openness creates new opportunities for flexible, cost-effective, and high-performance deployments. Achieving real-time and energy-efficient baseband processing on commercial off-the-shelf platforms, however, remains a critical challenge. This article explores how single instruction multiple data (SIMD) architectures can accelerate RAN workloads. We first outline why key physical-layer functions, such as channel estimation, multiple-input multiple-output (MIMO) detection, and forward error correction, are well aligned with SIMD's data-level parallelism. We then present practical design guidelines and prototype results, showing significant improvements in throughput and energy efficiency compared to conventional CPU-only processing, while retaining programmability and ease of integration. Finally, we discuss open challenges in workload balancing and hardware heterogeneity, and highlight the role of SIMD as an enabling technology for flexible, efficient, and sustainable 6G-ready RANs.




Abstract:This paper presents a novel framework for enhancing physical-layer security in integrated sensing and communication (ISAC) systems by leveraging the reconfigurability of fluid antenna systems (FAS). We propose a joint precoding and port selection (JPPS) strategy that maximizes the sum secrecy rate while simultaneously ensuring reliable radar sensing. The problem is formulated using fractional programming (FP) and solved through an iterative algorithm that integrates FP transformations with successive convex approximation (SCA). To reduce computational complexity, we further develop low-complexity schemes based on zero-forcing (ZF) precoding, combined with greedy port selection and trace-inverse minimization. Simulation results demonstrate substantial improvements in both secrecy performance and sensing accuracy compared to conventional baselines, across a wide range of FAS ports, user loads, and sensing targets. These findings highlight the critical importance of FAS geometry optimization in enabling secure and efficient joint communication-sensing for next-generation wireless networks.




Abstract:Traditional single-input single-output (SISO) systems face fundamental limitations in achieving accurate three-dimensional (3D) localization due to limited spatial degrees of freedom (DoF) and the adverse impact of multipath propagation. This paper proposes a novel fluid antenna system (FAS)-active reconfigurable intelligent surface (ARIS) framework that transforms multipath effects from a hindrance into a resource for enhanced localization. By synergistically combining the signal amplification capabilities of ARIS with the spatial diversity enabled by FAS, the proposed system achieves robust 3D user equipment (UE) positioning -- without relying on auxiliary information such as time-of-arrival (ToA) or frequency diversity. The system exploits both line-of-sight (LoS) and non-line-of-sight (NLoS) components through a tailored signal decoupling strategy. We design novel UE pilot sequences and ARIS phase configurations to effectively separate LoS and NLoS channels, enabling independent parameter estimation. A multi-stage estimation algorithm is then applied: the multiple signal classification (MUSIC) algorithm estimates angle-of-arrival (AoA) from the direct path, while maximum likelihood estimation with interior-point refinement recovers cascaded channel parameters from the reflected path. Finally, geometric triangulation using least-squares estimation determines the UE's 3D position based on the extracted AoA information. Comprehensive performance analysis, including the derivation of Cram\'{e}r-Rao bounds for both channel and position estimation, establishes theoretical benchmarks. Simulation results confirm that the proposed FAS-ARIS framework achieves near-optimal localization accuracy while maintaining robustness in rich multipath environments -- effectively turning conventional localization challenges into advantages.
Abstract:This paper proposes a method for accurately estimating the relative position between two nodes with unknown locations in a diffusion-based molecular communication environment. A specialized node structure is designed, combining a central absorbing receiver with multiple transmitters placed at predefined spherical coordinates. Pilot molecules are released, and their absorption time and concentration are measured. By partitioning the spherical coordinate space, these spatially distinct measurements serve as input to a multilayer perceptron (MLP)-based model. The proposed method significantly improves the precision of distance and direction estimation. Simulation results demonstrate localization accuracy, confirming the effectiveness of the neural network model in capturing the underlying physical characteristics.




Abstract:The shift toward sixth-generation (6G) wireless networks places integrated sensing and communications (ISAC) at the core of future applications such as autonomous driving, extended reality, and smart manufacturing. However, the combination of large antenna arrays and ultra-wide bandwidths brings near-field propagation effects and beam squint to the forefront, fundamentally challenging traditional far-field designs. True time delay units (TTDs) offer a potential solution, but their cost and hardware complexity limit scalability. In this article, we present practical beamforming strategies for near-field ultra-wideband ISAC systems. We explore codebook designs across analog and digital domains that mitigate beam squint, ensure reliable user coverage, and enhance sensing accuracy. We further validate these approaches through large-scale system-level simulations, including 3D map-based evaluations that reflect real-world urban environments. Our results demonstrate how carefully designed beamforming can balance communication throughput with sensing performance, achieving reliable coverage and efficient resource use even under severe near-field conditions. We conclude by highlighting open challenges in hardware, algorithms, and system integration, pointing toward research directions that will shape the deployment of 6G-ready ISAC networks.




Abstract:The explosive growth of teletraffic, fueled by the convergence of cyber-physical systems and data-intensive applications, such as the Internet of Things (IoT), autonomous systems, and immersive communications, demands a multidisciplinary suite of innovative solutions across the physical and network layers. Fluid antenna systems (FAS) represent a transformative advancement in antenna design, offering enhanced spatial degrees of freedom through dynamic reconfigurability. By exploiting spatial flexibility, FAS can adapt to varying channel conditions and optimize wireless performance, making it a highly promising candidate for next-generation communication networks. This paper provides a comprehensive survey of the state of the art in FAS research. We begin by examining key application scenarios in which FAS offers significant advantages. We then present the fundamental principles of FAS, covering channel measurement and modeling, single-user configurations, and the multi-user fluid antenna multiple access (FAMA) framework. Following this, we delve into key network-layer techniques such as quality-of-service (QoS) provisioning, power allocation, and content placement strategies. We conclude by identifying prevailing challenges and outlining future research directions to support the continued development of FAS in next-generation wireless networks.
Abstract:Fluid antenna (FA), as an emerging antenna technology, fully exploits spatial diversity. This paper integrates FA with the receive spatial modulation (RSM) scheme and proposes a novel FA-empowered RSM (FA-RSM) system. In this system, the transmitter is equipped with an FA that simultaneously activates multiple ports to transmit precoded signals. We address three key challenges in the FA-RSM system: port selection, theoretical analysis, and detection. First, for port selection, an optimal algorithm from a capacity maximization perspective are proposed, followed by two low-complexity alternatives. Second, for theoretical analysis, performance evaluation metrics are provided for port selection, which demonstrate that increasing the number of activated ports enhances system performance. Third, regarding detection, two low-complexity detectors are proposed. Simulation results confirm that the FA-RSM system significantly outperforms the conventional RSM system. The proposed low-complexity port selection algorithms facilitate minimal performance degradation. Moreover, while activating additional ports improves performance, the gain gradually saturates due to inherent spatial correlation, highlighting the importance of effective port selection in reducing system complexity and cost. Finally, both proposed detectors achieve near-optimal detection performance with low computational complexity, emphasizing the receiver-friendly nature of the FA-RSM system.