Abstract:Virtual try-on (VTON) is a crucial task for enhancing user experience in online shopping by generating realistic garment previews on personal photos. Although existing methods have achieved impressive results, they struggle with long-sleeve-to-short-sleeve conversions-a common and practical scenario-often producing unrealistic outputs when exposed skin is underrepresented in the original image. We argue that this challenge arises from the ''majority'' completion rule in current VTON models, which leads to inaccurate skin restoration in such cases. To address this, we propose UR-VTON (Undress-Redress Virtual Try-ON), a novel, training-free framework that can be seamlessly integrated with any existing VTON method. UR-VTON introduces an ''undress-to-redress'' mechanism: it first reveals the user's torso by virtually ''undressing,'' then applies the target short-sleeve garment, effectively decomposing the conversion into two more manageable steps. Additionally, we incorporate Dynamic Classifier-Free Guidance scheduling to balance diversity and image quality during DDPM sampling, and employ Structural Refiner to enhance detail fidelity using high-frequency cues. Finally, we present LS-TON, a new benchmark for long-sleeve-to-short-sleeve try-on. Extensive experiments demonstrate that UR-VTON outperforms state-of-the-art methods in both detail preservation and image quality. Code will be released upon acceptance.
Abstract:To address the challenges posed by the heterogeneity inherent in federated learning (FL) and to attract high-quality clients, various incentive mechanisms have been employed. However, existing incentive mechanisms are typically utilized in conventional synchronous aggregation, resulting in significant straggler issues. In this study, we propose a novel asynchronous FL framework that integrates an incentive mechanism based on contract theory. Within the incentive mechanism, we strive to maximize the utility of the task publisher by adaptively adjusting clients' local model training epochs, taking into account factors such as time delay and test accuracy. In the asynchronous scheme, considering client quality, we devise aggregation weights and an access control algorithm to facilitate asynchronous aggregation. Through experiments conducted on the MNIST dataset, the simulation results demonstrate that the test accuracy achieved by our framework is 3.12% and 5.84% higher than that achieved by FedAvg and FedProx without any attacks, respectively. The framework exhibits a 1.35% accuracy improvement over the ideal Local SGD under attacks. Furthermore, aiming for the same target accuracy, our framework demands notably less computation time than both FedAvg and FedProx.
Abstract:Over-the-air Computation (AirComp) has been demonstrated as an effective transmission scheme to boost the efficiency of federated edge learning (FEEL). However, existing FEEL systems with AirComp scheme often employ traditional synchronous aggregation mechanisms for local model aggregation in each global round, which suffer from the stragglers issues. In this paper, we propose a semi-asynchronous aggregation FEEL mechanism with AirComp scheme (PAOTA) to improve the training efficiency of the FEEL system in the case of significant heterogeneity in data and devices. Taking the staleness and divergence of model updates from edge devices into consideration, we minimize the convergence upper bound of the FEEL global model by adjusting the uplink transmit power of edge devices at each aggregation period. The simulation results demonstrate that our proposed algorithm achieves convergence performance close to that of the ideal Local SGD. Furthermore, with the same target accuracy, the training time required for PAOTA is less than that of the ideal Local SGD and the synchronous FEEL algorithm via AirComp.