Abstract:Reward models (RMs) play a critical role in enhancing the reasoning performance of LLMs. For example, they can provide training signals to finetune LLMs during reinforcement learning (RL) and help select the best answer from multiple candidates during inference. In this paper, we provide a systematic introduction to RMs, along with a comprehensive survey of their applications in LLM reasoning. We first review fundamental concepts of RMs, including their architectures, training methodologies, and evaluation techniques. Then, we explore their key applications: (1) guiding generation and selecting optimal outputs during LLM inference, (2) facilitating data synthesis and iterative self-improvement for LLMs, and (3) providing training signals in RL-based finetuning. Finally, we address critical open questions regarding the selection, generalization, evaluation, and enhancement of RMs, based on existing research and our own empirical findings. Our analysis aims to provide actionable insights for the effective deployment and advancement of RMs for LLM reasoning.
Abstract:Recent work has shown that representation learning plays a critical role in sample-efficient reinforcement learning (RL) from pixels. Unfortunately, in real-world scenarios, representation learning is usually fragile to task-irrelevant distractions such as variations in background or viewpoint. To tackle this problem, we propose a novel clustering-based approach, namely Clustering with Bisimulation Metrics (CBM), which learns robust representations by grouping visual observations in the latent space. Specifically, CBM alternates between two steps: (1) grouping observations by measuring their bisimulation distances to the learned prototypes; (2) learning a set of prototypes according to the current cluster assignments. Computing cluster assignments with bisimulation metrics enables CBM to capture task-relevant information, as bisimulation metrics quantify the behavioral similarity between observations. Moreover, CBM encourages the consistency of representations within each group, which facilitates filtering out task-irrelevant information and thus induces robust representations against distractions. An appealing feature is that CBM can achieve sample-efficient representation learning even if multiple distractions exist simultaneously.Experiments demonstrate that CBM significantly improves the sample efficiency of popular visual RL algorithms and achieves state-of-the-art performance on both multiple and single distraction settings. The code is available at https://github.com/MIRALab-USTC/RL-CBM.